U-Turn Alternating Sign Matrices, Symplectic Shifted Tableaux and their Weighted Enumeration

被引:0
作者
A. M. Hamel
R. C. King
机构
[1] Wilfrid Laurier University,Department of Physics and Computer Science
[2] University of Southampton,School of Mathematics
来源
Journal of Algebraic Combinatorics | 2005年 / 21卷
关键词
alternating sign matrices; symplectic tableaux;
D O I
暂无
中图分类号
学科分类号
摘要
Alternating sign matrices with a U-turn boundary (UASMs) are a recent generalization of ordinary alternating sign matrices. Here we show that variations of these matrices are in bijective correspondence with certain symplectic shifted tableaux that were recently introduced in the context of a symplectic version of Tokuyama’s deformation of Weyl’s denominator formula. This bijection yields a formula for the weighted enumeration of UASMs. In this connection use is made of the link between UASMs and certain square ice configuration matrices.
引用
收藏
页码:395 / 421
页数:26
相关论文
共 21 条
[1]  
Eisenkölbl T.(2001)2-enumerations of halved alternating sign matrices Sém. Loth. de Combin. B46c 11-2328
[2]  
El Samra N.(1979)Dimensions of irreducible representations of the classical Lie groups J. Phys. A. 12 2317-300
[3]  
King R.C.(2002)Symplectic shifted tableaux and deformations of Weyl’s denominator formula for J. Algebraic Combin. 16 269-3177
[4]  
Hamel A.M.(1983)(2 J. Phys. A 16 3153-418
[5]  
King R.C.(1982)) Comm. Math. Phys. 86 391-150
[6]  
King R.C.(1996)Standard Young tableaux and weight multiplicities of the classical Lie groups Internat. Math. Res. Notices. 1996 139-866
[7]  
El-Sharkaway N.G.I.(2002)Calculation of norms of Bethe wave functions Ann. of Math. (2). 156 835-694
[8]  
Korepin V.E.(1999)Another proof of the alternating sign matrix conjecture Sém. Loth. de Combin. B42 15-87
[9]  
Kuperberg G.(1967)Symmetry classes of alternating sign matrices under one roof Phys. Rev. Lett. 18 692-176
[10]  
Kuperberg G.(1982)Square ice enumeration Invent. Math. 66 73-685