Solving a Nonlinear Fractional Stochastic Partial Differential Equation with Fractional Noise

被引:0
|
作者
Junfeng Liu
Litan Yan
机构
[1] Nanjing Audit University,Department of Statistics
[2] Donghua University,Department of Mathematics
来源
关键词
Stable-like generator of variable order; Green function; Fractional noise; Hölder regularity; Malliavin calculus; 60G15; 60H05; 60H07;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we will prove the existence, uniqueness and Hölder regularity of the solution to the fractional stochastic partial differential equation of the form ∂∂tu(t,x)=D(x,D)u(t,x)+∂f∂x(t,x,u(t,x))+∂2WH∂t∂x(t,x),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial }{\partial t}u(t,x)=\mathfrak {D}(x,D)u(t,x)+\frac{\partial f}{\partial x}(t,x,u(t,x))+\frac{\partial ^2 W^H}{\partial t\partial x}(t,x), \end{aligned}$$\end{document}where D(x,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}(x,D)$$\end{document} denotes the Markovian generator of stable-like Feller process, f:[0,T]×R×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:[0,T]\times \mathbb {R}\times \mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a measurable function, and ∂2WH∂t∂x(t,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial ^2 W^H}{\partial t\partial x}(t,x)$$\end{document} is a double-parameter fractional noise. In addition, we establish lower and upper Gaussian bounds for the probability density of the mild solution via Malliavin calculus and the new tool developed by Nourdin and Viens (Electron J Probab 14:2287–2309, 2009).
引用
收藏
页码:307 / 347
页数:40
相关论文
共 50 条