Solving a Nonlinear Fractional Stochastic Partial Differential Equation with Fractional Noise

被引:0
|
作者
Junfeng Liu
Litan Yan
机构
[1] Nanjing Audit University,Department of Statistics
[2] Donghua University,Department of Mathematics
来源
关键词
Stable-like generator of variable order; Green function; Fractional noise; Hölder regularity; Malliavin calculus; 60G15; 60H05; 60H07;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we will prove the existence, uniqueness and Hölder regularity of the solution to the fractional stochastic partial differential equation of the form ∂∂tu(t,x)=D(x,D)u(t,x)+∂f∂x(t,x,u(t,x))+∂2WH∂t∂x(t,x),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial }{\partial t}u(t,x)=\mathfrak {D}(x,D)u(t,x)+\frac{\partial f}{\partial x}(t,x,u(t,x))+\frac{\partial ^2 W^H}{\partial t\partial x}(t,x), \end{aligned}$$\end{document}where D(x,D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}(x,D)$$\end{document} denotes the Markovian generator of stable-like Feller process, f:[0,T]×R×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:[0,T]\times \mathbb {R}\times \mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a measurable function, and ∂2WH∂t∂x(t,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial ^2 W^H}{\partial t\partial x}(t,x)$$\end{document} is a double-parameter fractional noise. In addition, we establish lower and upper Gaussian bounds for the probability density of the mild solution via Malliavin calculus and the new tool developed by Nourdin and Viens (Electron J Probab 14:2287–2309, 2009).
引用
收藏
页码:307 / 347
页数:40
相关论文
共 50 条
  • [1] Solving a Nonlinear Fractional Stochastic Partial Differential Equation with Fractional Noise
    Liu, Junfeng
    Yan, Litan
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (01) : 307 - 347
  • [2] On a stochastic fractional partial differential equation with a fractional noise
    Shi, Kehua
    Wang, Yongjin
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2012, 84 (01) : 21 - 36
  • [3] A quasilinear stochastic partial differential equation driven by fractional white noise
    Grecksch, Wilfried
    Roth, Christian
    MONTE CARLO METHODS AND APPLICATIONS, 2008, 13 (5-6): : 353 - 367
  • [4] On a nonlinear stochastic pseudo-differential equation driven by fractional noise
    Liu, Junfeng
    Yan, Litan
    STOCHASTICS AND DYNAMICS, 2018, 18 (01)
  • [5] Existence and Stability of Solutions for a Class of Stochastic Fractional Partial Differential Equation with a Noise
    Bouteraa, N.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2022, 41 : 107 - 120
  • [6] Walsh function for solving fractional partial differential equation
    Malik, Azhar
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 2057 - 2068
  • [7] A Reliable Technique for Solving Fractional Partial Differential Equation
    Alshehry, Azzh Saad
    Shah, Rasool
    Shah, Nehad Ali
    Dassios, Ioannis
    AXIOMS, 2022, 11 (10)
  • [8] On a stochastic partial differential equation with a fractional Laplacian operator
    Chang, Tongkeun
    Lee, Kijung
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (09) : 3288 - 3311
  • [9] On a jump-type stochastic fractional partial differential equation with fractional noises
    Liu, Junfeng
    Yan, Litan
    Cang, Yuquan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (16) : 6060 - 6070
  • [10] Mild solutions of a fractional partial differential equation with noise
    Bouteraa, Noureddine
    Inc, Mustafa
    Akinlar, Mehmet Ali
    Bin-Mohsin, Bandar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5648 - 5662