Properties of Toeplitz Operators on the Dirichlet Space Over the Ball

被引:0
作者
Yin Yin Hu
Yu Feng Lu
Liu Liu
机构
[1] Dalian Maritime University,Department of Mathematics
[2] Dalian University of Technology,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2019年 / 35卷
关键词
Toeplitz operator; pluriharmonic symbols; Dirichlet space; 47B35; 47B32;
D O I
暂无
中图分类号
学科分类号
摘要
On the Dirichlet space of the unit ball, we study some algebraic properties of Toeplitz operators. We give a relation between Toeplitz operators on the Dirichlet space and their analogues defined on the Hardy space. Based on this, we characterize when finite sums of products of Toeplitz operators are of finite rank. Also, we give a necessary and sufficient condition for the commutator and semi-commutator of two Toeplitz operators being zero.
引用
收藏
页码:1617 / 1628
页数:11
相关论文
共 14 条
  • [1] Ahern P(2001)A theorem of Brown-Halmos type for Bergman space Toeplitz operators J. Funct. Anal. 187 200-210
  • [2] Cuckovic Z(1991)Commuting Toeplitz operators with harmonic symbols Integr. Equ. Oper. Theory 14 1-12
  • [3] Axler S(1964)Algebraic properties of Toeplitz operators J. Reine Angew. Math. 213 89-102
  • [4] Cuckovic Z(1999)Fredholm properties of Toeplitz operators on Dirichlet spaces Pacific J. Math. 188 209-223
  • [5] Brown A(2011)Toeplitz products with pluriharmonic symbols on the Hardy space over the ball J. Math. Anal. Appl. 381 365-382
  • [6] Halmos P R(2011)Sums of products of Toeplitz and Hankel operators on the Dirichlet space Integr. Equ. Oper. Theory 71 275-302
  • [7] Cao G(2010)Toeplitz operators on the Dirichlet space Integr. Equ. Oper. Theory 67 163-170
  • [8] Choe B(1998)Commuting Toeplitz operators with pluriharmonic symbols Trans. Amer. Math. Soc. 350 1595-1618
  • [9] Koo H(undefined)undefined undefined undefined undefined-undefined
  • [10] Lee Y(undefined)undefined undefined undefined undefined-undefined