General expansion for period maps of Riemann surfaces

被引:0
作者
FangLiang Yin
机构
[1] Zhejiang University,Center of Mathematical Sciences
来源
Science China Mathematics | 2010年 / 53卷
关键词
period map; moduli space; Siegel metric; Bergman metric; 32G15; 30F60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we get the full expansion for period map from the moduli space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M}_g $$\end{document} of curves to the coarse moduli space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A}_g $$\end{document} of g-dimensional principally polarized abelian varieties in Bers coordinates. This generalizes fully the famous Rauch’s variational formula. As applications, we compute the curvature of Siegel metric at point [X] with Π([X]) = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt { - 1} I_g $$\end{document} and the Christoffel symbols of L2-induced Bergman metric on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M}_g $$\end{document}.
引用
收藏
页码:2021 / 2030
页数:9
相关论文
共 4 条
[1]  
Mayer A.(1969)Rauch’s variational formula and the heat equation Math Ann 181 53-59
[2]  
Rauch H.(1959)Weierstrass points, branch points, and moduli of Riemann surfaces Comm Pure Appl Math 12 543-560
[3]  
Toledo D.(1987)Nonexistence of certain closed complex geodesics in the moduli space of curves Pacific J Math 129 187-192
[4]  
Wolpert S.(1986)Chern forms and the Riemann tensor for the moduli space of curves Invent Math 85 119-145