Spectral Stability of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\partial }}$$\end{document}-Neumann Laplacian: The Kohn–Nirenberg Elliptic Regularization

被引:0
作者
Siqi Fu
Chunhui Qiu
Weixia Zhu
机构
[1] Rutgers University,Department of Mathematical Sciences
[2] Xiamen University,School of Mathematical Sciences
关键词
The ; -Neumann Laplacian; The Kohn–Nirenberg elliptic regularization; Variational eigenvalue; Pseudoconvex domain; Finite type condition; 32W05; 32G05; 35J25; 35P15;
D O I
10.1007/s12220-020-00421-2
中图分类号
学科分类号
摘要
In this paper we study spectral stability of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\partial }$$\end{document}-Neumann Laplacian under the Kohn–Nirenberg elliptic regularization. We obtain quantitative estimates for stability of the spectrum of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\partial }$$\end{document}-Neumann Laplacian when either the operator or the underlying domain is perturbed.
引用
收藏
页码:3968 / 3987
页数:19
相关论文
共 14 条
[1]  
Burenkov VI(2008)Spectral stability of Dirichlet second order uniformly elliptic operators J. Diff. Equ. 244 1712-1740
[2]  
Lamberti PD(1983)Necessary conditions for subellipticity of the Ann. Math. 117 147-171
[3]  
Catlin D(1987)-Neumann problem Ann. Math. 126 131-191
[4]  
Catlin D(1982)Subelliptic estimates for the Ann. Math. 115 615-637
[5]  
D’Angelo J(1959)-Neumann problem on pseudoconvex domains Trans. Am. Math. Soc. 93 418-491
[6]  
Federer H(1999)Real hypersurfaces, orders of contact, and applications J. Funct. Anal. 167 183-200
[7]  
Fuglede B(1965)Curvature measures Acta Math. 113 89-152
[8]  
Hörmander L(1963)Continuous domain dependence of the eigenvalues of the Dirichlet Laplacian and related operators in Hilbert space Ann. Math. 78 112-148
[9]  
Kohn JJ(1964) estimates and existence theorems for the Ann. Math. 79 450-472
[10]  
Kohn JJ(1965) operator Commun. Pure Appl. Math. 18 443-492