Renormalization of supersymmetric Lifshitz sigma models

被引:0
作者
Ziqi Yan
机构
[1] Nordita,
[2] KTH Royal Institute of Technology and Stockholm University,undefined
来源
Journal of High Energy Physics | / 2023卷
关键词
Renormalization Group; Sigma Models; Superspaces; P-Branes;
D O I
暂无
中图分类号
学科分类号
摘要
We study the renormalization of an N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 supersymmetric Lifshitz sigma model in three dimensions. The sigma model exhibits worldvolume anisotropy in space and time around the high-energy z = 2 Lifshitz point, such that the worldvolume is endowed with a foliation structure along a preferred time direction. In curved backgrounds, the target-space geometry is equipped with two distinct metrics, and the interacting sigma model is power-counting renormalizable. At low energies, the theory naturally flows toward the relativistic sigma model where Lorentz symmetry emerges. In the superspace formalism, we develop a heat kernel method that is covariantized with respect to the bimetric target-space geometry, using which we evaluate the one-loop beta-functions of the Lifshitz sigma model. This study forms an essential step toward a thorough understanding of the quantum critical supermembrane as a candidate high-energy completion of the relativistic supermembrane.
引用
收藏
相关论文
共 70 条
[1]  
de Wit B(1988) 2 + 1 Nucl. Phys. B 305 545-undefined
[2]  
Hoppe J(1997)undefined Phys. Rev. D 55 5112-undefined
[3]  
Nicolai H(1997)undefined Phys. Rev. Lett. 79 3577-undefined
[4]  
Banks T(1998)undefined Adv. Theor. Math. Phys. 2 51-undefined
[5]  
Fischler W(2018)undefined JHEP 11 133-undefined
[6]  
Shenker SH(2022)undefined JHEP 04 161-undefined
[7]  
Susskind L(1989)undefined Nucl. Phys. B 320 135-undefined
[8]  
Seiberg N(1996)undefined Nucl. Phys. B 460 506-undefined
[9]  
Sen A(2001)undefined Rev. Mod. Phys. 73 419-undefined
[10]  
Bergshoeff E(2002)undefined Grav. Cosmol. 8 1-undefined