Gravitational partial-wave absorption from scattering amplitudes

被引:0
作者
Rafael Aoude
Alexander Ochirov
机构
[1] Université catholique de Louvain,Centre for Cosmology, Particle Physics and Phenomenology (CP3)
[2] London Institute for Mathematical Sciences,undefined
[3] Royal Institution,undefined
来源
Journal of High Energy Physics | / 2023卷
关键词
Black Holes; Effective Field Theories; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
We study gravitational absorption effects using effective on-shell scattering amplitudes. We develop an in-in probability-based framework involving plane- and partial-wave coherent states for the incoming wave to describe the interaction of the wave with a black hole or another compact object. We connect this framework to a simplified single-quantum analysis. The basic ingredients are mass-changing three-point amplitudes, which model the leading absorption effects and a spectral-density function of the black hole. As an application, we consider a non-spinning black hole that may start spinning as a consequence of the dynamics. The corresponding amplitudes are found to correspond to covariant spin-weighted spherical harmonics, the properties of which we formulate and make use of. We perform a matching calculation to general-relativity results at the cross-section level and derive the effective absorptive three-point couplings. They are found to behave as OGNewtons+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}_{\textrm{Newton}}^{s+1}\right) $$\end{document}, where s is the spin of the outgoing massive state.
引用
收藏
相关论文
共 147 条
[1]  
Porto RA(2016) ≤ 5 Phys. Rept. 633 1-undefined
[2]  
Bern Z(2022)2 J. Phys. A 55 443003-undefined
[3]  
Carrasco JJ(2022) → J. Phys. A 55 443014-undefined
[4]  
Chiodaroli M(2022)undefined J. Phys. A 55 443015-undefined
[5]  
Johansson H(2023)undefined JHEP 09 183-undefined
[6]  
Roiban R(2022)undefined JHEP 07 072-undefined
[7]  
Bjerrum-Bohr NEJ(2019)undefined JHEP 11 070-undefined
[8]  
Damgaard PH(2020)undefined JHEP 05 051-undefined
[9]  
Plante L(2021)undefined JHEP 02 048-undefined
[10]  
Vanhove P(2019)undefined JHEP 09 056-undefined