Compressions of free products of von Neumann algebras

被引:0
作者
Kenneth J. Dykema
Florin Radulescu
机构
[1] Department of Mathematics,
[2] Texas A&M University,undefined
[3] College Station,undefined
[4] TX 77843,undefined
[5] USA (e-mail: Ken.Dykema@math.tamu.edu) ,undefined
[6] Depatment of Mathematics,undefined
[7] University of Iowa,undefined
[8] Iowa City IA 52242–1466,undefined
[9] USA (e-mail: radulesc@math.uiowa.edu) ,undefined
来源
Mathematische Annalen | 2000年 / 316卷
关键词
Mathematics Subject Classification (1991):46L35, 46L40;
D O I
暂无
中图分类号
学科分类号
摘要
A reduction formula for compressions of von Neumann algebra II\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_1$\end{document}–factors arising as free products is proved. This shows that the fundamental group is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\bf R}^*_+$\end{document} for some such algebras. Additionally, by taking a sort of free product with an unbounded semicircular element, continuous one parameter groups of trace scaling automorphisms on II\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_\infty$\end{document}–factors are constructed; this produces type III\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_1$\end{document} factors with core \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathcal{M}\otimes B(\mathcal{H})$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathcal{M}$\end{document} can be a full II\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_1$\end{document}–factor without the Haagerup approximation property.
引用
收藏
页码:61 / 82
页数:21
相关论文
empty
未找到相关数据