A unifying perspective: the relaxed linear micromorphic continuum

被引:0
|
作者
Patrizio Neff
Ionel-Dumitrel Ghiba
Angela Madeo
Luca Placidi
Giuseppe Rosi
机构
[1] Universität Duisburg-Essen,Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik
[2] Université de Lyon-INSA,Laboratoire de Génie Civil et Ingénierie Environnementale
[3] Università Telematica Internazionale Uninettuno,Laboratoire Modélisation Multi
[4] Université Paris-Est,Echelle, MSME UMR 8208 CNRS
来源
Continuum Mechanics and Thermodynamics | 2014年 / 26卷
关键词
Micromorphic elasticity; Symmetric Cauchy stresses; Dynamic problem; Dislocation dynamics; Gradient plasticity; Symmetric micromorphic model; Dislocation energy; Earthquake processes; Generalized continua; Nonpolar material; Microstructure; Micro-elasticity; Size effects; Fracture; Non-smooth solutions; Gradient elasticity; Strain gradient elasticity; Couple stresses; Cosserat couple modulus; Wave propagation; Band gaps;
D O I
暂无
中图分类号
学科分类号
摘要
We formulate a relaxed linear elastic micromorphic continuum model with symmetric Cauchy force stresses and curvature contribution depending only on the micro-dislocation tensor. Our relaxed model is still able to fully describe rotation of the microstructure and to predict nonpolar size effects. It is intended for the homogenized description of highly heterogeneous, but nonpolar materials with microstructure liable to slip and fracture. In contrast to classical linear micromorphic models, our free energy is not uniformly pointwise positive definite in the control of the independent constitutive variables. The new relaxed micromorphic model supports well-posedness results for the dynamic and static case. There, decisive use is made of new coercive inequalities recently proved by Neff, Pauly and Witsch and by Bauer, Neff, Pauly and Starke. The new relaxed micromorphic formulation can be related to dislocation dynamics, gradient plasticity and seismic processes of earthquakes. It unifies and simplifies the understanding of the linear micromorphic models.
引用
收藏
页码:639 / 681
页数:42
相关论文
共 50 条
  • [1] A unifying perspective: the relaxed linear micromorphic continuum
    Neff, Patrizio
    Ghiba, Ionel-Dumitrel
    Madeo, Angela
    Placidi, Luca
    Rosi, Giuseppe
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2014, 26 (05) : 639 - 681
  • [2] Band gaps in the relaxed linear micromorphic continuum
    Madeo, Angela
    Neff, Patrizio
    Ghiba, Ionel-Dumitrel
    Placidi, Luca
    Rosi, Giuseppe
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (09): : 880 - 887
  • [3] The relaxed linear micromorphic continuum: Existence, uniqueness and continuous dependence in dynamics
    Ghiba, Ionel-Dumitrel
    Neff, Patrizio
    Madeo, Angela
    Placidi, Luca
    Rosi, Giuseppe
    MATHEMATICS AND MECHANICS OF SOLIDS, 2015, 20 (10) : 1171 - 1197
  • [4] Linear theory of thermoelastic relaxed micromorphic continuum without energy dissipation
    Bala, Suman
    Khurana, Aarti
    Tomar, S. K.
    ARCHIVE OF APPLIED MECHANICS, 2022, 92 (12) : 3801 - 3816
  • [5] Linear theory of thermoelastic relaxed micromorphic continuum without energy dissipation
    Suman Bala
    Aarti Khurana
    S. K. Tomar
    Archive of Applied Mechanics, 2022, 92 : 3801 - 3816
  • [6] Global regularity in a nonlinear relaxed micromorphic continuum on Lipschitz domains
    Knees, Dorothee
    Owczarek, Sebastian
    Neff, Patrizio
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (02)
  • [7] THE RELAXED LINEAR MICROMORPHIC CONTINUUM: WELL-POSEDNESS OF THE STATIC PROBLEM AND RELATIONS TO THE GAUGE THEORY OF DISLOCATIONS
    Neff, P.
    Ghiba, I. D.
    Lazar, M.
    Madeo, A.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2015, 68 (01): : 53 - 84
  • [8] On the dispersion of waves for the linear thermoelastic relaxed micromorphic model
    Khurana, Aarti
    Bala, Suman
    Khan, Hassam
    Tumar, Sushil K.
    Neff, Patrizio
    JOURNAL OF THERMAL STRESSES, 2020, 43 (01) : 3 - 20
  • [9] Uniqueness, continuous dependence and reciprocity theorems in thermoelastic relaxed micromorphic continuum
    Bala, Suman
    Khurana, Aarti
    Tomar, S. K.
    JOURNAL OF THERMAL STRESSES, 2021, 44 (06) : 715 - 730
  • [10] A note on local higher regularity in the dynamic linear relaxed micromorphic model
    Owczarek, Sebastian
    Ghiba, Ionel-Dumitrel
    Neff, Patrizio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 13855 - 13865