Extremal coloring for the anti-Ramsey problem of matchings in complete graphs

被引:0
作者
Zemin Jin
Yuefang Sun
Sherry H. F. Yan
Yuping Zang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Shaoxing University,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2017年 / 34卷
关键词
Anti-Ramsey number; Rainbow matching; Extremal coloring; 05C15; 05C35; 05C55; 05C70; 05D10;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G, the anti-Ramsey number AR(Kn,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AR(K_n,G)$$\end{document} is defined to be the maximum number of colors in an edge-coloring of Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} which does not contain any rainbow G (i.e., all the edges of G have distinct colors). The anti-Ramsey number was introduced by Erdős et al. (Infinite and finite sets, pp 657–665, 1973) and so far it has been determined for several special graph classes. Another related interesting problem posed by Erdős et al. is the uniqueness of the extremal coloring for the anti-Ramsey number. Contrary to the anti-Ramsey number, there are few results about the extremal coloring. In this paper, we show the uniqueness of such extremal coloring for the anti-Ramsey number of matchings in the complete graph.
引用
收藏
页码:1012 / 1028
页数:16
相关论文
共 49 条
[31]  
Li XL(undefined)undefined undefined undefined undefined-undefined
[32]  
Li XL(undefined)undefined undefined undefined undefined-undefined
[33]  
Tu JH(undefined)undefined undefined undefined undefined-undefined
[34]  
Jin ZM(undefined)undefined undefined undefined undefined-undefined
[35]  
Li XL(undefined)undefined undefined undefined undefined-undefined
[36]  
Xu ZX(undefined)undefined undefined undefined undefined-undefined
[37]  
Montellano-Ballesteros JJ(undefined)undefined undefined undefined undefined-undefined
[38]  
Neumann-Lara V(undefined)undefined undefined undefined undefined-undefined
[39]  
Montellano-Ballesteros JJ(undefined)undefined undefined undefined undefined-undefined
[40]  
Neumann-Lara V(undefined)undefined undefined undefined undefined-undefined