Moduli of Continuity of Harmonic Quasiregular Mappings in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{B}^n$\end{document}

被引:0
作者
Miloš Arsenović
Vladimir Božin
Vesna Manojlović
机构
[1] University of Belgrade,Faculty of Mathematics
[2] University of Belgrade,undefined
关键词
Modulus of continuity; Harmonic mappings; Quasiregular mappings; Primary—30C65; 31B05; Secondary—31B25;
D O I
10.1007/s11118-010-9195-8
中图分类号
学科分类号
摘要
We prove that ωu(δ) ≤ Cωf(δ), where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u : \overline{\mathbb{B}^n} \rightarrow \mathbb{R}^n$\end{document} is the harmonic extension of a continuous map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:\mathbb{S}^{n-1}\rightarrow\mathbb{R}^n$\end{document}, if u is a K-quasiregular map. Here C is a constant depending only on n, ωf and K and ωh denotes the modulus of continuity of h.
引用
收藏
页码:283 / 291
页数:8
相关论文
共 30 条
  • [1] Aikawa H(2002)Hölder continuity of the Dirichlet solution for a general domain Bull. Lond. Math. Soc. 34 691-702
  • [2] Arsenović M(2008)On Lipschitz continuity of harmonic quasiregular maps on the unit ball in ℝ Ann. Acad. Sci. Fenn. 33 315-318
  • [3] Kojić V(2009)On the modulus of continuity of harmonic quasiregular mappings on the unit ball in Filomat 23 199-202
  • [4] Mateljević M(1980)Potential methods in variational inequalities J. Anal. Math. 37 285-295
  • [5] Arsenović M(1988)Modulus of continuity of harmonic functions J. Anal. Math. 51 1-29
  • [6] Manojlović V(2009)Lipschitz spaces and harmonic mappings Ann. Acad. Sci. Fenn., Math. 34 475-485
  • [7] Caffarelli LA(2005)Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane Ann. Acad. Sci. Fenn., Math. 30 159-165
  • [8] Kinderlehrer D(2008)Subharmonicity of | J. Math. Anal. Appl. 342 742-746
  • [9] Hinkkanen A(1968)| Ann. Acad. Sci. Fenn., A 1 425 3-10
  • [10] Kalaj D(1991) for quasiregular harmonic functions with applications J. Lond. Math. Soc. 44 339-350