Rate of Convergence for Discretization of Integrals with Respect to Fractional Brownian Motion

被引:0
作者
Ehsan Azmoodeh
Lauri Viitasaari
机构
[1] University of Luxembourg,de la Technologie et de la Communication, Faculté des Sciences
[2] Aalto University School of Science,Department of Mathematics and Systems Analysis
来源
Journal of Theoretical Probability | 2015年 / 28卷
关键词
Fractional Brownian motion; Stochastic integral; Discretization; Rate of convergence; 60G22; 60H05; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, a uniform discretization of stochastic integrals ∫01f−′(Bt)dBt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{0}^{1} f^{\prime }_-(B_t)\mathrm d B_t$$\end{document}, where B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} denotes the fractional Brownian motion with Hurst parameter H∈(12,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \in (\frac{1}{2},1)$$\end{document}, is considered for a large class of convex functions f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}. In Azmoodeh et al. (Stat Decis 27:129–143, 2010), for any convex function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}, the almost sure convergence of uniform discretization to such stochastic integral is proved. Here, we prove Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r$$\end{document}-convergence of uniform discretization to stochastic integral. In addition, we obtain a rate of convergence. It turns out that the rate of convergence can be brought arbitrarily close to H−12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H - \frac{1}{2}$$\end{document}.
引用
收藏
页码:396 / 422
页数:26
相关论文
共 16 条
[1]  
Azmoodeh E(2010)On hedging European options in geometric fractional Brownian motion market model Stat. Decis. 27 129-143
[2]  
Mishura Y(2008)Discrete approximation of stochastic integrals with respect to fractional Brownian motion of Hurst index Stochastics 80 407-426
[3]  
Valkeila E(2001)Mixed fractional Brownian motion Bernoulli 7 913-934
[4]  
Biagini F(2001)Tanaka formula for the fractional Brownian motion Stoch. Process. Appl. 94 301-315
[5]  
Campanino M(2002)Differential equations driven by fractional Brownian motion Collect. Math. 53 55-81
[6]  
Fuschini S(2001)On the complexity of stochastic integration Math. Comput. 70 685-698
[7]  
Cheridito P(1936)An inequality of the Hölder type, connected with Stieltjes integration Acta Math. 67 251-282
[8]  
Coutin L(1998)Integration with respect to fractal functions and stochastic calculus. Part I Probab. Theory Relat. Fields 111 333-372
[9]  
Nualart D(undefined)undefined undefined undefined undefined-undefined
[10]  
Tudor C(undefined)undefined undefined undefined undefined-undefined