Abundance of Wild Historic Behavior

被引:0
作者
V. Araujo
V. Pinheiro
机构
[1] Universidade Federal da Bahia,Departamento de Matemática
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2021年 / 52卷
关键词
Historic behavior; Wild historic points; Generic properties; Heteroclinic attractor; Primary: 37A99, 37C20, Secondary: 37C29;
D O I
暂无
中图分类号
学科分类号
摘要
Using Caratheodory measures, we associate to each positive orbit [inline-graphic not available: see fulltext] of a measurable map f, a Borel measure ηx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{x}$$\end{document}. We show that ηx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{x}$$\end{document} is f-invariant whenever f is continuous or ηx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{x}$$\end{document} is a probability. These measures are used to study the historic points of the system, that is, points with no Birkhoff averages, and we construct topologically generic subset of wild historic points for wide classes of dynamical models. We use properties of the measure ηx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _x$$\end{document} to deduce some features of the dynamical system involved, like the existence of heteroclinic connections from the existence of open sets of historic points.
引用
收藏
页码:41 / 76
页数:35
相关论文
共 91 条
[1]  
Alves JF(2000)SRB measures for non-hyperbolic systems with multidimensional expansion Ann. Sci. École Norm. Sup. 33 1-32
[2]  
Alves JF(2000)SRB measures for partially hyperbolic systems whose central direction is mostly expanding Invent. Math. 140 351-398
[3]  
Bonatti C(2009)Singular-hyperbolic attractors are chaotic Trans. A.M.S. 361 2431-2485
[4]  
Viana M(2012)Full shifts and irregular sets Sao Paulo J. Math. Sci. 6 135-143
[5]  
Araújo V(2014)Irregular sets are residual Tohoku Math. J. (2) 66 471-489
[6]  
Pujals ER(2014)Irregular sets for ratios of Birkhoff averages are residual Publ. Mat. 58 49-62
[7]  
Pacifico MJ(2016)Irregular sets of two-sided Birkhoff averages and hyperbolic sets Ark. Mat. 54 13-30
[8]  
Viana M(2001)Variational principles and mixed multifractal spectra Trans. Am. Math. Soc. 353 3919-3944
[9]  
Barreira L(2000)Sets of “non-typical” points have full topological entropy and full hausdorff dimension Israel J. Math. 116 29-70
[10]  
Li J(2007)Construction of curious minimal uniquely ergodic homeomorphisms on manifolds: the denjoy-rees technique Annales Scientifiques de l’École Normale Supérieure 40 251-308