共 46 条
- [31] Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^{2}}$$\end{document}-double cyclic codes with respect to the Hermitian inner product Applicable Algebra in Engineering, Communication and Computing, 2024, 35 (2) : 151 - 166
- [32] A mass formula for negacyclic codes of length 2k and some good negacyclic codes over ℤ4+uℤ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{4}+u\mathbb {Z}_{4}$\end{document} Cryptography and Communications, 2017, 9 (2) : 241 - 272
- [33] Self-dual skew-codes of odd lengths over Z4+uZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4+u\mathbb {Z}_4$$\end{document} Cryptography and Communications, 2025, 17 (2) : 511 - 523
- [34] Linear codes over Fq×(Fq+vFq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q\times (\mathbb {F}_q+v\mathbb {F}_q)$$\end{document} Journal of Applied Mathematics and Computing, 2023, 69 (4) : 3553 - 3578
- [35] On some classes of linear codes over Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{2}{\mathbb {Z}}_{4}$$\end{document} and their covering radii Journal of Applied Mathematics and Computing, 2017, 53 (1-2) : 201 - 222
- [36] A class of constacyclic codes over Fpm[u]/u2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}}_{p^m}[u]/\left\langle u^2\right\rangle$$\end{document} Indian Journal of Pure and Applied Mathematics, 2022, 53 (2) : 355 - 371
- [37] Repeated root cyclic codes over ℤp2+uℤp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{p^{2}}+u\mathbb {Z}_{p^{2}}$\end{document} and their Lee distances Cryptography and Communications, 2022, 14 (3) : 551 - 577
- [38] Self-dual codes over F2×(F2+vF2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2} \times (\mathbb {F}_{2}+v\mathbb {F}_{2})$\end{document} Cryptography and Communications, 2021, 13 (1) : 129 - 141
- [39] MacWilliams Identities of the Linear Codes Over Fq×(Fq+vFq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q\times ({\mathbb {F}}_q+v{\mathbb {F}}_q)$$\end{document} Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47 (6)
- [40] Some results on quasi-twisted codes over F2[u]/uk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2[u]/\left( u^{k+1}\right) $$\end{document} Journal of Applied Mathematics and Computing, 2016, 50 (1-2) : 483 - 491