A note on self-dual negacyclic codes of length ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^s$$\end{document} over [inline-graphic not available: see fulltext]

被引:0
|
作者
Parinyawat Choosuwan
Somphong Jitman
Patanee Udomkavanich
机构
[1] Rajamangala University of Technology Thanyaburi (RMUTT),Department of Mathematics and Computer Science, Faculty of Science and Technology
[2] Silpakorn University,Department of Mathematics, Faculty of Science
[3] Chulalongkorn University,Department of Mathematics and Computer Science, Faculty of Science
关键词
Negacyclic codes; Self-dual codes; Codes over rings; Euclidean inner product; Hermitian inner product; 94B05; 94B15; 13B25; 94B60;
D O I
10.1007/s40879-019-00378-9
中图分类号
学科分类号
摘要
Self-dual cyclic codes over rings and their generalizations have become of interest due to their rich algebraic structures and wide applications. Cyclic and self-dual cyclic codes over the ring [inline-graphic not available: see fulltext] have been quite well studied, where p is a prime, k is a positive integer, and u2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^2=0$$\end{document}. We focus on negacyclic codes over [inline-graphic not available: see fulltext], where p is an odd prime and k is a positive integer. An alternative and explicit algebraic characterization of negacyclic codes of length ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^s$$\end{document} over [inline-graphic not available: see fulltext] is presented. Based on this result, representation and enumeration of self-dual negacyclic codes of length ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^s$$\end{document} over [inline-graphic not available: see fulltext] are given under both the Euclidean and Hermitian inner products.
引用
收藏
页码:1424 / 1437
页数:13
相关论文
共 46 条