共 46 条
- [21] On the automorphism group of a binary self-dual [120,60,24]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[120, 60, 24]$$\end{document} code Applicable Algebra in Engineering, Communication and Computing, 2013, 24 (3-4) : 201 - 214
- [22] G-codes, self-dual G-codes and reversible G-codes over the ring Bj,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathscr{B}}_{j,k}$\end{document} Cryptography and Communications, 2021, 13 (5) : 601 - 616
- [23] Self-dual codes over F2[u]/⟨u4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_2[u]/\langle u^4 \rangle $$\end{document} and Jacobi forms over a totally real subfield of Q(ζ8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\zeta _8)$$\end{document} Designs, Codes and Cryptography, 2021, 89 (5) : 1091 - 1109
- [24] Some classes of linear codes over Z4+vZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4+v\mathbb {Z}_4$$\end{document} and their applications to construct good and new Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}-linear codes Applicable Algebra in Engineering, Communication and Computing, 2017, 28 (2) : 131 - 153
- [25] Codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}_3 + u\mathbb{F}_3 $$ \end{document} and Improvements to the Bounds on Ternary Linear Codes Designs, Codes and Cryptography, 2001, 22 (1) : 89 - 96
- [26] On self-dual and LCD double circulant and double negacirculant codes over Fq+uFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}+u\mathbb {F}_{q}$\end{document} Cryptography and Communications, 2020, 12 (1) : 53 - 70
- [27] Self-dual constacyclic codes of length 2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^s$$\end{document} over the ring F2m[u,v]/⟨u2,v2,uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^m}[u,v]/\langle u^2, v^2, uv-vu \rangle $$\end{document} Journal of Applied Mathematics and Computing, 2022, 68 (1) : 431 - 459
- [28] On some constacyclic codes over Z4u/u2-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{4}\left[ u\right] /\left\langle u^{2}-1\right\rangle $$\end{document}, their Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document} images, and new codes Designs, Codes and Cryptography, 2018, 86 (6) : 1249 - 1255
- [29] Classification of type I codes over F4+uF4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{4}+u{\mathbb {F}}_{4}$$\end{document} Journal of Applied Mathematics and Computing, 2023, 69 (4) : 3021 - 3037
- [30] New extremal binary self-dual codes of length 64 from R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_3$$\end{document}-lifts of the extended binary Hamming code Designs, Codes and Cryptography, 2015, 74 (3) : 673 - 680