Weyl type theorems in Banach algebras and hyponormal elements in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document} algebras

被引:0
作者
Zhenying Wu
Qingping Zeng
Yunnan Zhang
机构
[1] Fujian Normal University,School of Mathematics and Statistics
[2] Fujian Agriculture and Forestry University,College of Computer and Information Sciences
关键词
Weyl’s theorem; Generalized Weyl’s theorem; Perturbation theory; Hyponormal element; Banach algebra; C* algebra; 46H99; 47C15; 47A55; 47B20;
D O I
10.1007/s43037-024-00338-w
中图分类号
学科分类号
摘要
It is established that the relationships between Weyl’s theorem, Browder’s theorem, generalized Weyl’s theorem and generalized Browder’s theorem in a semiprime Banach algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}. We prove that if the commutant of a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in {\mathcal {A}}$$\end{document} contains a left or right injective quasinilpotent element, then f(a) satisfies Weyl’s theorem for f belongs to Hol(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}ol(a)$$\end{document}, the set of analytic functions on a neighborhood of σ(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (a)$$\end{document}. It is shown that the accumulation points of the spectrum of an element in A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} are invariant under any commuting perturbation f such that fn∈soc(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{n} \in \textrm{soc}({\mathcal {A}})$$\end{document} for some n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in {\mathbb {N}}$$\end{document}. This result provides a positive answer to Question 2.8 in (Linear Multilinear Algebra 64(2):247–257, 2016), and it is then applied to investigate the perturbations of Weyl’s theorem and generalized Weyl’s theorem. It is also shown that if a is a hyponormal element (that is, a∗a≥aa∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a^{*}a \ge aa^{*}$$\end{document}) in a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document} algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} and f∈Hol(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in {\mathcal {H}}ol(a)$$\end{document}, then f(a) satisfies Weyl’s theorem. If additionally A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is primitive then f(a) obeys generalized Weyl’s theorem. We also consider some other interesting properties of hyponormal elements in C* algebras, including simply polaroidness, topological divisor of zero, self-adjointness of the spectral projection with respect to λ∈isoσ(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \text {iso}\sigma (a)$$\end{document}, and the spectral mapping theorem of the Weyl spectrum.
引用
收藏
相关论文
共 33 条
  • [11] Berkani M(2008)The index for Fredholm elements in a Banach algebra via a trace Stud Math. 187 281-297
  • [12] Sarih M(1996)A generalize Drazin inverse Glasg. Math. J. 38 367-381
  • [13] Boasso E(1993)More on Fredholm theory relative to a Banach algebra homomorphism Proc. R. Ir. Acad. 93A 17-25
  • [14] Coburn LA(1996)A spectral mapping theorem for the Weyl spectrum Glasg. Math. J. 38 61-64
  • [15] Drazin MP(2005)Weyl’s theorem and perturbations Integr. Equ. Oper. Theory 53 535-545
  • [16] Grobler JJ(1974)Riesz points of the spectrum of an element in a semisimple Banach algebra Trans. Am. Math. Soc. 193 303-328
  • [17] Raubenheimer H(1999)Continuity of generalized inverses in Banach algebras Stud. Math. 136 197-227
  • [18] Koliha JJ(1975)Riesz theory in Banach algebras Math. Z. 145 145-155
  • [19] Mouton T(1982)Fredholm theory in Banach algebras Banach Center Publ. 8 403-414
  • [20] Raubenheimer H(1965)Hyponormal operators and spectral density Trans. Am. Math. Soc. 117 469-476