Recovering Quantum Logic Within an Extended Classical Framework

被引:0
|
作者
Claudio Garola
Sandro Sozzo
机构
[1] dell’Università del Salento and Sezione INFN,Dipartimento di Fisica
[2] Vrije Universiteit Brussel (VUB),Center Leo Apostel (CLEA)
来源
Erkenntnis | 2013年 / 78卷
关键词
Quantum Mechanic; Classical Logic; Quantum Logic; Classical Mechanic; Intended Interpretation;
D O I
暂无
中图分类号
学科分类号
摘要
We present a procedure which allows us to recover classical and nonclassical logical structures as concrete logics associated with physical theories expressed by means of classical languages. This procedure consists in choosing, for a given theory \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{T}}}$$\end{document} and classical language \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{L}}}$$\end{document} expressing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{T}}, }$$\end{document} an observative sublanguage L of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{L}}}$$\end{document} with a notion of truth as correspondence, introducing in L a derived and theory-dependent notion of C-truth (true with certainty), defining a physical preorder\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prec$$\end{document} induced by C-truth, and finally selecting a set of sentences ϕV that are verifiable (or testable) according to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{T}}, }$$\end{document} on which a weak complementation⊥ is induced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{T}}. }$$\end{document} The triple \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi_{V},\prec,^{\perp})$$\end{document} is then the desired concrete logic. By applying this procedure we recover a classical logic and a standard quantum logic as concrete logics associated with classical and quantum mechanics, respectively. The latter result is obtained in a purely formal way, but it can be provided with a physical meaning by adopting a recent interpretation of quantum mechanics that reinterprets quantum probabilities as conditional on detection rather than absolute. Hence quantum logic can be considered as a mathematical structure formalizing the properties of the notion of verification in quantum physics. This conclusion supports the general idea that some nonclassical logics can coexist without conflicting with classical logic (global pluralism) because they formalize metalinguistic notions that do not coincide with the notion of truth as correspondence but are not alternative to it either.
引用
收藏
页码:399 / 419
页数:20
相关论文
共 50 条
  • [41] Unified Interpretation of Quantum and Classical Logics
    Kenji Tokuo
    Axiomathes, 2014, 24 : 1 - 7
  • [42] Feasible computation based on quantum logic
    Kenji Tokuo
    SN Applied Sciences, 2019, 1
  • [43] Nice Embedding in Classical Logic
    Verdee, Peter
    Batens, Diderik
    STUDIA LOGICA, 2016, 104 (01) : 47 - 78
  • [44] Kripke models for classical logic
    Ilik, Danko
    Lee, Gyesik
    Herbelin, Hugo
    ANNALS OF PURE AND APPLIED LOGIC, 2010, 161 (11) : 1367 - 1378
  • [45] Quantum Logic and Quantum Reconstruction
    Stairs, Allen
    FOUNDATIONS OF PHYSICS, 2015, 45 (10) : 1351 - 1361
  • [46] Quantum Logic and Quantum Reconstruction
    Allen Stairs
    Foundations of Physics, 2015, 45 : 1351 - 1361
  • [47] Editors' Introduction: The Third Life of Quantum Logic: Quantum Logic Inspired by Quantum Computing
    Dunn, J. Michael
    Moss, Lawrence S.
    Wang, Zhenghan
    JOURNAL OF PHILOSOPHICAL LOGIC, 2013, 42 (03) : 443 - 459
  • [48] Complementary Proof Nets for Classical Logic
    Pulcini, Gabriele
    Varzi, Achille C.
    LOGICA UNIVERSALIS, 2023, 17 (04) : 411 - 432
  • [49] Canonical proof nets for classical logic
    McKinley, Richard
    ANNALS OF PURE AND APPLIED LOGIC, 2013, 164 (06) : 702 - 732
  • [50] An Equation-Based Classical Logic
    Mordido, Andreia
    Caleiro, Carlos
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION, WOLLIC 2015, 2015, 9160 : 38 - 52