On the interplay between CPE metrics, vacuum static spaces and σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _2$$\end{document}-singular spaces

被引:0
作者
Maria Andrade
机构
[1] Universidade Federal de Sergipe,Departamento de Matemática
关键词
Total scalar curvature; Critical point equation; Einstein metric; -curvature; Vacuum static space; Primary 53C24; 53C25; Secondary 53C20; 53C21;
D O I
10.1007/s00013-021-01652-7
中图分类号
学科分类号
摘要
We call CPE metrics the critical points of the total scalar curvature functional restricted to the space of metrics with constant scalar curvature of unitary volume. In this short note, we give a necessary and sufficient condition for a CPE metric to be Einstein in terms of σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _2$$\end{document}-singular spaces. Such a result improves our understanding about CPE metrics and Besse’s conjecture with a new geometric point of view. Moreover, we prove that the CPE condition can be replaced by the related vacuum static space condition to characterize closed Einstein manifolds in terms of σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _2$$\end{document}-singular spaces.
引用
收藏
页码:687 / 695
页数:8
相关论文
共 17 条
[1]  
Ambrozio L(2017)On static three-manifolds with positive scalar curvature J. Differential Geom. 55 1-45
[2]  
Barros A(2014)Critical point equation on four-dimensional compact manifolds Math. Nachr. 287 1618-1623
[3]  
Ribeiro E(2015)Critical metrics of the total scalar curvature functional on 4-manifolds Math. Nachr. 288 1814-1821
[4]  
Barros A(2020)Besse conjecture for compact manifolds with pinched curvature Arch. Math. (Basel) 115 229-239
[5]  
Leandro B(2018)Deformations of the scalar curvature Duke Math. J. 42 519-547
[6]  
Ribeiro E(2013)Three dimensional critical point of the total scalar curvature Bull. Korean Math. Soc. 50 867-871
[7]  
Baltazar H(2016)Deformations of Q-curvature I Calc. Var. Partial Differential Equations 55 1-29
[8]  
Fischer A(2015)A note on critical point metrics of the total scalar curvature functional J. Math. Anal. Appl. 424 1544-1548
[9]  
Marsden J(1962)Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14 333-340
[10]  
Hwang S(2018)Deformation of the Ann. Global Anal. Geom 54 71-85