A Study on PbMoO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PbMoO}_4$$\end{document} Phonon-Scintillation Detection with MMC Readouts for a Neutrinoless Double Beta Decay Search

被引:3
作者
H. L. Kim
J. H. So
Y. H. Kim
H. J. Kim
S. S. Nagorny
S. R. Kim
Y. D. Kim
M. H. Lee
V. N. Shlegel
机构
[1] Institute for Basic Science (IBS),Center for Underground Physics
[2] University of Science and Technology (UST),IBS School
[3] Kyungpook National University,Department of Physics
[4] Queen’s University,Department of Physics, Engineering Physics and Astronomy
[5] McDonald Canadian Astroparticle Physics Research Institute,undefined
[6] Nikolaev Institute of Inorganic Chemistry SB RAS,undefined
关键词
Low-temperature detectors; Phonon-scintillation detector; Neutrinoless double beta decay; Rare process experiment; Magnetic microcalorimete;
D O I
10.1007/s10909-022-02824-7
中图分类号
学科分类号
摘要
The advanced Mo-based rare process experiment (AMoRE) is an international project searching for the neutrinoless double beta (0νββ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\nu \beta \beta $$\end{document}) decay of 100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}$$\end{document}Mo using low-temperature calorimetric detection of heat and light signals based on magnetic microcalorimeter (MMC) readouts. Li2MoO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}_2\hbox {MoO}_4$$\end{document} crystals have been considered as the main target crystals for the second phase of the AMoRE project, which aims to use 100 kg of 100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}$$\end{document}Mo. However, the hygroscopicity of Li2MoO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}_2\hbox {MoO}_4$$\end{document} requires moistureless processes during surface treatment, storage, detector assembly, and installation. PbMoO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PbMoO}_4$$\end{document} crystals are nonhygroscopic and exhibit high scintillation efficiency, often leading to high particle discrimination power in the phonon channel via pulse-shape analysis and light/heat ratio variation. A low-temperature detector setup with a 1 cm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {cm}^3$$\end{document} cubic crystal of PbMoO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PbMoO}_4$$\end{document} was prepared for simultaneous heat and light detection based on MMC readouts. After study of internal background control using archeological Pb, PbMoO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PbMoO}_4$$\end{document} crystal can be a promising candidate crystal. We present a feasibility study of PbMoO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PbMoO}_4$$\end{document} crystals for a 0νββ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\nu \beta \beta $$\end{document} experiment.
引用
收藏
页码:409 / 416
页数:7
相关论文
共 26 条
[1]  
Schechter J(1982)undefined Phys. Rev. D 25 2951-2954
[2]  
Valle JWF(2017)undefined Eur. Phys. J. C 77 13-5
[3]  
Alduino C(2021)undefined Phys. Rev. Lett. 126 791-549
[4]  
Armengaud E(2020)undefined Phys. Rev. Lett. 125 1900079-1088
[5]  
Agostini M(2019)undefined Phys. Rev. Lett. 122 162107-85
[6]  
Gando A(2019)undefined Eur. Phys. J. C 79 1-1011
[7]  
Alenkov V(2012)undefined Phys. Rev. C 85 084005-537
[8]  
Kotila J(2019)undefined Cryst. Res. Technol. 54 546-933
[9]  
Iachello F(2020)undefined Nucl. Instr. Meth. A 954 1082-770
[10]  
Kim HJ(2021)undefined IEEE Trans. Appl. Supercond. 31 C08011-undefined