Limits of the boundary of random planar maps

被引:0
|
作者
Loïc Richier
机构
[1] CMAP,
[2] École polytechnique,undefined
来源
关键词
05C80; 60K35;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss asymptotics for the boundary of critical Boltzmann planar maps under the assumption that the distribution of the degree of a typical face is in the domain of attraction of a stable distribution with parameter α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document}. First, in the dense phase corresponding to α∈(1,3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,3/2)$$\end{document}, we prove that the scaling limit of the boundary is the random stable looptree with parameter 1/(α-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/(\alpha -1/2)$$\end{document}. Second, we show the existence of a phase transition through local limits of the boundary: in the dense phase, the boundary is tree-like, while in the dilute phase corresponding to α∈(3/2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (3/2,2)$$\end{document}, it has a component homeomorphic to the half-plane. As an application, we identify the limits of loops conditioned to be large in the rigid O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} loop model on quadrangulations, proving thereby a conjecture of Curien and Kortchemski.
引用
收藏
页码:789 / 827
页数:38
相关论文
共 50 条
  • [31] The topological structure of scaling limits of large planar maps
    Jean-François Le Gall
    Inventiones mathematicae, 2007, 169 : 621 - 670
  • [32] Limits of conformal images and conformal images of limits for planar random curves
    Karrila, Alex M.
    ENSEIGNEMENT MATHEMATIQUE, 2024, 70 (3-4): : 385 - 423
  • [33] RANDOM WALK ON RANDOM PLANAR MAPS: SPECTRAL DIMENSION, RESISTANCE AND DISPLACEMENT
    Gwynne, Ewain
    Miller, Jason
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1097 - 1128
  • [34] ON SCALING LIMITS OF RANDOM HALIN-LIKE MAPS
    Amankwah, Daniel
    Stefansson, Sigurdur Orn
    MATHEMATICA SCANDINAVICA, 2023, 129 (03) : 507 - 542
  • [35] Random sampling of large planar maps and convex polyhedra
    Universite Bordeaux I, Talence, France
    Conf Proc Annu ACM Symp Theory Comput, (760-769):
  • [36] THE BROWNIAN MAP: A UNIVERSAL LIMIT FOR RANDOM PLANAR MAPS
    Le Gall, J. -F.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 420 - 428
  • [37] The Wecken property for random maps on surfaces with boundary
    Brimley, Jacqueline
    Griisser, Matthew
    Miller, Allison
    Staecker, P. Christopher
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (18) : 3662 - 3676
  • [38] The distribution of the maximum vertex degree in random planar maps
    Gao, ZC
    Wormald, NC
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 89 (02) : 201 - 230
  • [39] ON THE SCALING LIMIT OF RANDOM PLANAR MAPS WITH LARGE FACES
    Le Gall, Jean-Francois
    Miermont, Gregory
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 470 - 474
  • [40] INFINITE RANDOM PLANAR MAPS RELATED TO CAUCHY PROCESSES
    Budd, Timothy
    Curien, Nicolas
    Marzouk, Cyril
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 749 - 791