The multi-player nonzero-sum Dynkin game in discrete time

被引:0
作者
Said Hamadène
Mohammed Hassani
机构
[1] Université du Maine,Département de Mathématiques et Informatique, Faculté poly
[2] LMM,disciplinaire de Safi
[3] Université Cadi Ayyad,undefined
来源
Mathematical Methods of Operations Research | 2014年 / 79卷
关键词
Nonzero-sum Game; Dynkin game; Snell envelope; Stopping time; Nash equilibrium point; Pure strategies; 91A15; 91A10; 91A30; 60G40; 91A60;
D O I
暂无
中图分类号
学科分类号
摘要
We study the infinite horizon discrete time N-player nonzero-sum Dynkin game (N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 2$$\end{document}) with stopping times as strategies (or pure strategies). The payoff depends on the set of players that stop at the termination stage (where the termination stage is the minimal stage in which at least one player stops). We prove existence of a Nash equilibrium point for the game provided that, for each player πi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _i$$\end{document} and each nonempty subset S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} of players that does not contain πi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _i$$\end{document}, the payoff if S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} stops at a given time is at least the payoff if S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} and πi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _i$$\end{document} stop at that time.
引用
收藏
页码:179 / 194
页数:15
相关论文
共 44 条
[1]  
Bensoussan A(1977)Nonzero-sum stochastic differential games with stopping times and free boundary value problem Trans AMS 213 275-327
[2]  
Friedman A(1977)Sur un problème de Dynkin Z Wahrsch Verw Geb 39 31-53
[3]  
Bismut JM(1990)Existence of an quasi-Markov Nash equilibrium for non-zero sun Markov stopping games Stoch Stoch Rep 30 85-103
[4]  
Cattiaux P(1996)Backward SDEs with reflection and Dynkin games Ann Probab 24 2024-2056
[5]  
Lepeltier JP(1969)The game variant of a problem on optimal stopping Sov Math Dokl 10 270-274
[6]  
Cvitanic J(2007)Randomized stopping games and Markov market games Math Methods Oper Res 66 531-544
[7]  
Karatzas I(2006)Mixed Zero-sum differential game and American game options SIAM J Control Optim 45 496-518
[8]  
Dynkin EB(2009)The continuous time nonzero-sum Dynkin Game problem and application in game options SIAM J Control Optim 48 3659-3669
[9]  
Ferenstein EZ(2012)Sequential correlated equilibrium in stopping games Oper Res 60 209-224
[10]  
Hamadène S(1971)Optimal stopped games Theory Prob Appl 16 185-189