In this paper we prove that the following delay differential equation ddtx(t)=rx(t)1-∫01x(t-s)ds,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \frac{d}{dt}x(t)=rx(t)\left( 1-\int _{0}^{1}x(t-s)ds\right) , \end{aligned}$$\end{document}has a periodic solution of period two for r>π22\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r>\frac{\pi ^{2}}{2}$$\end{document} (when the steady state, x=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x=1$$\end{document}, is unstable). In order to find the periodic solution, we study an integrable system of ordinary differential equations, following the idea by Kaplan and Yorke (J Math Anal Appl 48:317–324, 1974). The periodic solution is expressed in terms of the Jacobi elliptic functions.
机构:
China Univ Petr, Sch Math & Computat Sci, Dongying 257061, Shandong, Peoples R ChinaChina Univ Petr, Sch Math & Computat Sci, Dongying 257061, Shandong, Peoples R China