Volume inequalities for L0-Minkowski combination of convex bodies

被引:0
作者
Qixia Liu
Gangsong Leng
机构
[1] Shanghai University,Department of Mathematics
关键词
-Minkowski combination; -Brunn-Minkowski inequality; cone-volume probability measure; normalized ; -mixed volume; Wulff shape;
D O I
暂无
中图分类号
学科分类号
摘要
Recently Böröczky, Lutwak, Yang and Zhang proved the L0-Brunn-Minkowski inequality for two origin-symmetric convex bodies in the plane. This paper extends their results to m (m≥2) origin-symmetric convex bodies in the plane. Moreover, relying on the recent results of Schuster and Weberndorfer, volume inequalities for L0-Minkowski combination of origin-symmetric convex bodies in Rn and its dual form are established in this paper.
引用
收藏
相关论文
共 42 条
[1]  
Firey WJ(1962)-means of convex bodies Math. Scand 10 17-24
[2]  
Böröczky KJ(2012)The log-Brunn-Minkowski inequality Adv. Math 231 1974-1997
[3]  
Lutwak E(2012)Volume inequalities for asymmetric Wulff shapes J. Differ. Geom 92 263-284
[4]  
Yang D(2010)The even Orlicz Minkowski problem Adv. Math 224 2485-2510
[5]  
Zhang G(2013)The logarithmic Minkowski problem J. Am. Math. Soc 26 831-852
[6]  
Schuster FE(2002)The Brunn-Minkowski inequality Bull. Am. Math. Soc 39 355-405
[7]  
Weberndorfer M(2007)The geometry of Can. J. Math 59 1029-1049
[8]  
Haberl C(1988)Intersection bodies and dual mixed volumes Adv. Math 71 232-261
[9]  
Lutwak E(1993)The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem J. Differ. Geom 38 131-150
[10]  
Yang D(1996)The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas Adv. Math 118 244-294