Asymptotics of Solutions for Periodic Problem for the Korteweg-de Vries Equation with Landau Damping, Pumping and Higher Order Convective Non Linearity

被引:0
作者
Beatriz Juárez-Campos
José Villela-Aguilar
Rafael Carreño-Bolaños
机构
[1] Tecnológico Nacional de México,División de Estudios de Posgrado
来源
Journal of Nonlinear Mathematical Physics | 2023年 / 30卷
关键词
Asymptotics of solutions; Korteweg-de Vries equation; Landau damping; Convective non linearity; Primary: 35B10, 35Q40; Secondary: 35Q53;
D O I
暂无
中图分类号
学科分类号
摘要
We study the periodic problem for the Korteweg–de Vries equation with Landau damping, linear pumping and a higher-order convective nonlinearity wt+wxxx-αwxx=βw+λwx2wxx,x∈Ω,t>0,w(0,x)=ψx,x∈Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{c} w_{t}+w_{xxx}-\alpha w_{xx}=\beta w+\lambda w_{x}^{2}w_{xx},\text { }x\in \Omega ,t>0,\\ w(0,x)=\psi \left( x\right) ,\text { }x\in \Omega , \end{array} \right. \end{aligned}$$\end{document}where, α,β>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta >0,$$\end{document}λ∈R,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {R},$$\end{document}Ω=-π,π.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega =\left[ -\pi ,\pi \right] .$$\end{document} We assume that the initial data ψx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \left( x\right) $$\end{document} are 2π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\pi $$\end{document} - periodic. We prove the global existence of solutions and analyze their large-time asymptotics.
引用
收藏
页码:1316 / 1326
页数:10
相关论文
共 31 条
  • [1] Benney DJ(1966)Long waves on liquid films J. Math. Phys. 45 150-55
  • [2] Carreño-Bolaños R(2020)Periodic problem for the nonlinear damped wave equation with convective nonlinearity Stud. Appl. Math. 145 137-149
  • [3] Juárez-Campos B(1988)Local smoothing properties of dispersive equations J. Amer. Math. Soc. 1 413-439
  • [4] Naumkin PI(1967)Unified shock profile in a plasma Phys. Fluids 10 2596-2602
  • [5] Constantin P(2010)Asymptotics of solutions to the periodic problem for the nonlinear damped wave equation NoDEA Nonlinear Differential Equations Appl. 17 355-369
  • [6] Saut J-C(2020)Well-posedness for KdV-type equations with quadratic nonlinearity J. Evol. Equ. 20 811-835
  • [7] Grad H(1972)Collisional theory of shock and nonlinear waves in a plasma Phys. Fluids 15 854-64
  • [8] Hu PN(1970)A nonlinear equation incorporating damping and dispersion J. Fluid Mech. 42 49-60
  • [9] Hayashi N(2013)Asymptotic expansion of solutions of a periodic problem for a nonlinear equation of Sobolev type Izv. Ross. Akad. Nauk Ser. Mat. 77 97-108
  • [10] Naumkin PI(1994)Higher-order nonlinear dispersive equations Proc. Amer. Math. Soc. 122 157-166