Impact of land use change on groundwater quality in a typical karst watershed of southwest China: a case study of the Xiaojiang watershed, Yunnan Province

被引:0
作者
Yongjun Jiang
Cheng Zhang
Daoxian Yuan
Gui Zhang
Raosheng He
机构
[1] Southwest University,School of Geographical Sciences
[2] Southwest University,Research Institute of Karst Environment and Rocky Desert Control
[3] CAGS,Institute of Karst Geology
[4] Karst Dynamics Laboratory,undefined
[5] Institute of Geology Investigation in Yunnan Province,undefined
来源
Hydrogeology Journal | 2008年 / 16卷
关键词
Karst; Land-use change; Groundwater monitoring; Xiaojiang watershed; China;
D O I
暂无
中图分类号
学科分类号
摘要
The impact of land-use change on the quality of groundwater in the Xiaotjiang watershed, China was assessed for the period 1982–2004. Groundwater samples were collected from 30 monitoring points across the watershed, and were representative of the various changes, determined by remote sensing and geographical information systems. The results indicate that 610 km2 (60% of the total watershed area) were subject to land-use change during the period. The most important changes were the conversion of 135 km2 of forested land to cultivated land, and 211 km2 of unused land to cultivated land. The main impact was ascribed to diffuse pollution from fertilizers applied to newly cultivated land, and from building development. Overall the groundwater pH value was significantly increased, as were the concentrations of ions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NH}}^{ + }_{4} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{SO}}^{{2 - }}_{4} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NO}}^{ - }_{3} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NO}}^{ - }_{2} $$\end{document}, and Cl− in groundwater whilst the concentrations of Ca2+ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{HCO}}^{ - }_{3} $$\end{document} declined. More precisely, in the regions where forested land and unused land were converted into cultivated land, the pH value and the concentrations of Mg2+, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NH}}^{ + }_{4} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{SO}}^{{2 - }}_{4} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NO}}^{ - }_{3} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NO}}^{ - }_{2} $$\end{document}, Cl− increased whilst the concentrations of Ca2+ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{HCO}}^{ - }_{3} $$\end{document} declined. However in the region where cultivated land was converted into construction land, the pH value and the concentrations of Ca2+, Mg2+, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NH}}^{ + }_{4} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{HCO}}^{ - }_{3} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{SO}}^{{2 - }}_{4} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NO}}^{ - }_{3} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NO}}^{ - }_{2} $$\end{document}, Cl− increased.
引用
收藏
页码:727 / 735
页数:8
相关论文
共 52 条
[1]  
Boers PCM(1996)Nutrient emission from agriculture in the Netherlands causes and remedies Water Sci Technol 33 183-190
[2]  
Compton JE(2000)Long-term impacts of agriculture on soil carbon and nitrogen in New England forests Ecology 81 2314-2330
[3]  
Boone RD(1998)The impact of land clearance on karst groundwater: a case study from Buchan, Victoria, Australia IAH International Contributions to Hydrogeology 1 51-52
[4]  
Ellaway M(2002)Nitrogen budgets and environmental capacity in farm systems in a large-scale karst region, southern China Nutr Cycl Agroecosyst 63 139-149
[5]  
Finlayson B(1989)Municipal landfilling practice and its impact on groundwater resources in and around urban Toronto, Canada Hydrogeol J 4 64-79
[6]  
Webb J(2003)The impact of land use change on karst water in Shuicheng basin of Guizhou province Acta Geogr Sin 58 831-838
[7]  
Hatano R(2004)Dynamic change analysis of landscape pattern in a typical karst watershed Acta Geol Sin 24 2927-2931
[8]  
Shinano T(2006)Impact of land-use change on soil properties in a typical karst agricultural region of Southwest China: a case study of Xiaojiang watershed, Yunnan Environ Geol 50 911-988
[9]  
Zhang T(2005)Nitrogen cycling with respect to environmental load in farm systems in southwest China Nutr Cycl Agroecosyst 73 119-134
[10]  
Masahiko O(1998)Impacts of agriculture on water quality in the Big Spring basin, NE Iowa, U.S.A IAH International Contributions to Hydrogeology 1 57-58