Two-sided combinatorial volume bounds for non-obtuse hyperbolic polyhedra

被引:0
作者
Christopher K. Atkinson
机构
[1] Temple University,Department of Mathematics
来源
Geometriae Dedicata | 2011年 / 153卷
关键词
Hyperbolic geometry; Volume; Polyhedron; 57M50; 52B10;
D O I
暂无
中图分类号
学科分类号
摘要
We give a method for computing upper and lower bounds for the volume of a non-obtuse hyperbolic polyhedron in terms of the combinatorics of the 1-skeleton. We introduce an algorithm that detects the geometric decomposition of good 3-orbifolds with planar singular locus and underlying manifold S3. The volume bounds follow from techniques related to the proof of Thurston’s Orbifold Theorem, Schläfli’s formula, and previous results of the author giving volume bounds for right-angled hyperbolic polyhedra.
引用
收藏
页码:177 / 211
页数:34
相关论文
共 32 条
  • [1] Agol I.(2007)Lower bounds on volumes of hyperbolic Haken 3-manifolds J. Am. Math. Soc. 20 1053-1077
  • [2] Storm P.A.(1970)On convex polyhedra in Lobachevski spaces Math. USSR Sbornik 10 413-440
  • [3] Thurston W.P.(1970)On convex polyhedra of finite volume in Lobachevski space Math. USSR Sbornik 12 255-259
  • [4] Andreev E.M.(2009)Volume estimates for equiangular hyperbolic Coxeter polyhedra Algebr. Geom. Topol. 9 1225-1254
  • [5] Andreev E.M.(2002)Hyperideal polyhedra in hyperbolic 3-space Bull. Soc. Math. France 130 457-491
  • [6] Atkinson C.K.(1987)The characteristic toric splitting of irreducible compact 3-orbifolds Math. Ann. 278 441-479
  • [7] Bao X.(1999)On the volume formula for hyperbolic tetrahedra Discret. Comput. Geom. 22 347-366
  • [8] Bonahon F.(1980)A combinatorial decomposition theory Canad. J. Math. 32 734-765
  • [9] Bonahon F.(2005)A formula for the volume of a hyperbolic tetrahedron Uspekhi Mat. Nauk 60 159-160
  • [10] Siebenmann L.C.(1988)Hierarchies for 3-orbifolds Topol. Appl. 29 267-283