Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas

被引:0
作者
Zhen Liu
Xuanke Hong
Linglong Wang
Zeyu Ma
Fangzhan Guan
Weiwei Wang
Yuning Qiu
Xueping Zhang
Wenchao Duan
Minkai Wang
Chen Sun
Yuanshen Zhao
Jingxian Duan
Qiuchang Sun
Lin Liu
Lei Ding
Yuchen Ji
Dongming Yan
Xianzhi Liu
Jingliang Cheng
Zhenyu Zhang
Zhi-Cheng Li
Jing Yan
机构
[1] The First Affiliated Hospital of Zhengzhou University,Department of Neurosurgery
[2] Yanjing Medical College of Capital Medical University,Department of Pathology
[3] The First Affiliated Hospital of Zhengzhou University,Department of MRI
[4] The First Affiliated Hospital of Zhengzhou University,Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology
[5] Chinese Academy of Sciences,undefined
[6] University of Chinese Academy of Sciences,undefined
[7] China-Japan Union Hospital of Jilin University,undefined
[8] Shenzhen United Imaging Research Institute of Innovative Medical Equipment,undefined
来源
BMC Cancer | / 23卷
关键词
Pediatric low-grade glioma; Magnetic resonance imaging; Radiomics; Machine learning; fusion;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Topological features in addition to radiomics signature predict 1p19q status and tumor grade in low-grade gliomas
    Paul, Rahul
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (03) : 753 - 766
  • [42] Expression profiles of 151 pediatric low-grade gliomas reveal molecular differences associated with location and histological subtype
    Bergthold, Guillaume
    Bandopadhayay, Pratiti
    Hoshida, Yujin
    Ramkissoon, Shakti
    Ramkissoon, Lori
    Rich, Benjamin
    Maire, Cecile L.
    Paolella, Brenton R.
    Schumacher, Steven E.
    Tabak, Barbara
    Ferrer-Luna, Ruben
    Ozek, Memet
    Sav, Aydin
    Santagata, Sandro
    Wen, Patrick Yung
    Goumnerova, Liliana C.
    Ligon, Azra H.
    Stiles, Charles
    Segal, Rosalind
    Golub, Todd
    Grill, Jacques
    Ligon, Keith L.
    Chan, Jennifer A.
    Kieran, Mark W.
    Beroukhim, Rameen
    [J]. NEURO-ONCOLOGY, 2015, 17 (11) : 1486 - 1496
  • [43] Tumor Volume Assessment in Low-Grade Gliomas: A Comparison of Preoperative Magnetic Resonance Imaging to Coregistered Intraoperative 3-Dimensional Ultrasound Recordings
    Munkvold, Bodil Karoline Ravn
    Bo, Hans Kristian
    Jakola, Asgeir Store
    Reinertsen, Ingerid
    Berntsen, Erik Magnus
    Unsgard, Geirmund
    Torp, Sverre Helge
    Solheim, Ole
    [J]. NEUROSURGERY, 2018, 83 (02) : 288 - 295
  • [44] The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 2-Summary of Imaging Findings on Pediatric-Type Diffuse High-Grade Gliomas, Pediatric-Type Diffuse Low-Grade Gliomas, and Circumscribed Astrocytic Gliomas
    Park, Yae Won
    Vollmuth, Philipp
    Foltyn-Dumitru, Martha
    Sahm, Felix
    Ahn, Sung Soo
    Chang, Jong Hee
    Kim, Se Hoon
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (03) : 690 - 708
  • [45] Nonvisible tumors on multiparametric magnetic resonance imaging does not predict low-risk prostate cancer
    Lee, Seung Hwan
    Koo, Kyo Chul
    Lee, Dong Hoon
    Chung, Byung Ha
    [J]. PROSTATE INTERNATIONAL, 2015, 3 (04) : 127 - 131
  • [46] Role of intraoperative ultrasound and MRI to aid grade of resection of pediatric low-grade gliomas: accumulated experience from 4 centers
    Dietvorst, Sofie
    Narayan, Armen
    Agbor, Cyril
    Hennigan, Dawn
    Gorodezki, David
    Bianchi, Federico
    Mallucci, Conor
    Frassanito, Paolo
    Padayachy, Llewellyn
    Schuhmann, Martin Ulrich
    [J]. CHILDS NERVOUS SYSTEM, 2024, 40 (10) : 3165 - 3172
  • [47] Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach
    Kandalgaonkar, Pashmina
    Sahu, Arpita
    Saju, Ann Christy
    Joshi, Akanksha
    Mahajan, Abhishek
    Thakur, Meenakshi
    Sahay, Ayushi
    Epari, Sridhar
    Sinha, Shwetabh
    Dasgupta, Archya
    Chatterjee, Abhishek
    Shetty, Prakash
    Moiyadi, Aliasgar
    Agarwal, Jaiprakash
    Gupta, Tejpal
    Goda, Jayant S.
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [48] Multiparametric MRI Features Predict the SYP Gene Expression in Low-Grade Glioma Patients: A Machine Learning-Based Radiomics Analysis
    Xiao, Zheng
    Yao, Shun
    Wang, Zong-ming
    Zhu, Di-min
    Bie, Ya-nan
    Zhang, Shi-zhong
    Chen, Wen-li
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [49] Noninvasive Prediction of Histological Grading in Pediatric Low-Grade Gliomas Using Preoperative T2-FLAIR Radiomics Features
    Xu, Jiali
    Lai, Mingyao
    Li, Shaoqun
    Cai, Linbo
    Shi, Changzheng
    [J]. WORLD NEUROSURGERY, 2023, 177 : E34 - E43
  • [50] Low suspicion lesions on multiparametric magnetic resonance imaging predict for the absence of high-risk prostate cancer
    Yerram, Nitin K.
    Volkin, Dmitry
    Turkbey, Baris
    Nix, Jeffrey
    Hoang, Anthony N.
    Vourganti, Srinivas
    Gupta, Gopal N.
    Linehan, W. Marston
    Choyke, Peter L.
    Wood, Bradford J.
    Pinto, Peter A.
    [J]. BJU INTERNATIONAL, 2012, 110 (11B) : E783 - E788