Data-driven estimation of scalar quantities from planar velocity measurements by deep learning applied to temperature in thermal convection

被引:0
|
作者
Philipp Teutsch
Theo Käufer
Patrick Mäder
Christian Cierpka
机构
[1] Technische Universität Ilmenau,Institute of Practical Computer Science and Media Informatics
[2] Technische Universität Ilmenau,Institute of Thermodynamics and Fluid Mechanics
[3] Friedrich-Schiller-Universität,Faculty of Biological Sciences
[4] Lund University,Department of Biomedical Engineering
来源
Experiments in Fluids | 2023年 / 64卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The measurement of the transport of scalar quantities within flows is oftentimes laborious, difficult or even unfeasible. On the other hand, velocity measurement techniques are very advanced and give high-resolution, high-fidelity experimental data. Hence, we explore the capabilities of a deep learning model to predict the scalar quantity, in our case temperature, from measured velocity data. Our method is purely data-driven and based on the u-net architecture and, therefore, well-suited for planar experimental data. We demonstrate the applicability of the u-net on experimental temperature and velocity data, measured in large aspect ratio Rayleigh–Bénard convection at Pr=7.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Pr} =7.1$$\end{document} and Ra=2×105,4×105,7×105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ra} =2\times 10^5,4\times 10^5,7\times 10^5$$\end{document}. We conduct a hyper-parameter optimization and ablation study to ensure appropriate training convergence and test different architectural variations for the u-net. We test two application scenarios that are of interest to experimentalists. One, in which the u-net is trained with data of the same experimental run and one in which the u-net is trained on data of different Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ra}$$\end{document}. Our analysis shows that the u-net can predict temperature fields similar to the measurement data and preserves typical spatial structure sizes. Moreover, the analysis of the heat transfer associated with the temperature showed good agreement when the u-net is trained with data of the same experimental run. The relative difference between measured and reconstructed local heat transfer of the system characterized by the Nusselt number Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Nu}$$\end{document} is between 0.3 and 14.1% depending on Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ra}$$\end{document}. We conclude that deep learning has the potential to supplement measurements and can partially alleviate the expense of additional measurement of the scalar quantity.
引用
收藏
相关论文
共 50 条
  • [31] Discovering generative models from event logs: data-driven simulation vs deep learning
    Camargo, Manuel
    Dumas, Marlon
    Gonzalez-Rojas, Oscar
    PEERJ COMPUTER SCIENCE, 2021, 7
  • [32] Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications
    Wang, Qiao
    Ye, Min
    Cai, Xue
    Sauer, Dirk Uwe
    Li, Weihan
    APPLIED ENERGY, 2023, 350
  • [33] Data-driven Seeing Prediction for Optics Telescope: from Statistical Modeling, Machine Learning to Deep Learning Techniques
    Wei-Jian Ni
    Quan-Le Shen
    Qing-Tian Zeng
    Huai-Qing Wang
    Xiang-Qun Cui
    Tong Liu
    Research in Astronomy and Astrophysics, 2022, 22 (12) : 155 - 168
  • [34] Thermal Comfort Control in Air-Conditioned Buildings: new data-driven approaches to Neutral Temperature estimation
    Acerbi, Federica
    De Nicolao, Giuseppe
    Rampazzo, Mirco
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 2368 - 2373
  • [35] Temperature Rise Estimation of Substation Connectors Using Data-Driven Models Case: Thermal conveccion response.
    Giacometto, Francisco
    Capelli, Francesca
    Sala, Enric
    Riba, Jordi
    Romeral, Luis
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 3957 - 3962
  • [36] Data-driven Seeing Prediction for Optics Telescope: from Statistical Modeling, Machine Learning to Deep Learning Techniques
    Ni, Wei-Jian
    Shen, Quan-Le
    Zeng, Qing-Tian
    Wang, Huai-Qing
    Cui, Xiang-Qun
    Liu, Tong
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (12)
  • [37] Data-driven thermal state estimation for in-orbit systems via physics-informed machine learning
    Tanaka, Hiroto
    Nagai, Hiroki
    ACTA ASTRONAUTICA, 2023, 212 : 316 - 328
  • [38] A data-driven model for steel bridge temperature behaviour based on deep learning technology and heat transfer analysis
    Wang, Yanjia
    Yang, Dong
    Zhang, Jing
    Au, Francis T. K.
    ENGINEERING STRUCTURES, 2025, 322
  • [39] Data-driven control of room temperature and bidirectional EV charging using deep reinforcement learning: Simulations and experiments
    Svetozarevic, B.
    Baumann, C.
    Muntwiler, S.
    Di Natale, L.
    Zeilinger, M. N.
    Heer, P.
    APPLIED ENERGY, 2022, 307
  • [40] Data-Driven Temperature Deviation Estimation of a Proton Exchange Membrane Water Electrolyzer Stack from Electrochemical Impedance Using Machine Learning
    Katayama, Noboru
    Iki, Ryoma
    Chen, Xing-Xing
    Loo, Ka-Hong
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025,