Data-driven estimation of scalar quantities from planar velocity measurements by deep learning applied to temperature in thermal convection

被引:0
|
作者
Philipp Teutsch
Theo Käufer
Patrick Mäder
Christian Cierpka
机构
[1] Technische Universität Ilmenau,Institute of Practical Computer Science and Media Informatics
[2] Technische Universität Ilmenau,Institute of Thermodynamics and Fluid Mechanics
[3] Friedrich-Schiller-Universität,Faculty of Biological Sciences
[4] Lund University,Department of Biomedical Engineering
来源
Experiments in Fluids | 2023年 / 64卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The measurement of the transport of scalar quantities within flows is oftentimes laborious, difficult or even unfeasible. On the other hand, velocity measurement techniques are very advanced and give high-resolution, high-fidelity experimental data. Hence, we explore the capabilities of a deep learning model to predict the scalar quantity, in our case temperature, from measured velocity data. Our method is purely data-driven and based on the u-net architecture and, therefore, well-suited for planar experimental data. We demonstrate the applicability of the u-net on experimental temperature and velocity data, measured in large aspect ratio Rayleigh–Bénard convection at Pr=7.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Pr} =7.1$$\end{document} and Ra=2×105,4×105,7×105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ra} =2\times 10^5,4\times 10^5,7\times 10^5$$\end{document}. We conduct a hyper-parameter optimization and ablation study to ensure appropriate training convergence and test different architectural variations for the u-net. We test two application scenarios that are of interest to experimentalists. One, in which the u-net is trained with data of the same experimental run and one in which the u-net is trained on data of different Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ra}$$\end{document}. Our analysis shows that the u-net can predict temperature fields similar to the measurement data and preserves typical spatial structure sizes. Moreover, the analysis of the heat transfer associated with the temperature showed good agreement when the u-net is trained with data of the same experimental run. The relative difference between measured and reconstructed local heat transfer of the system characterized by the Nusselt number Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Nu}$$\end{document} is between 0.3 and 14.1% depending on Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ra}$$\end{document}. We conclude that deep learning has the potential to supplement measurements and can partially alleviate the expense of additional measurement of the scalar quantity.
引用
收藏
相关论文
共 50 条
  • [1] Data-driven estimation of scalar quantities from planar velocity measurements by deep learning applied to temperature in thermal convection
    Teutsch, Philipp
    Kaeufer, Theo
    Maeder, Patrick
    Cierpka, Christian
    EXPERIMENTS IN FLUIDS, 2023, 64 (12)
  • [2] A New Data-Driven Model to Predict Monthly Runoff at Watershed Scale: Insights from Deep Learning Method Applied in Data-Driven Model
    Jia, Shunqing
    Wang, Xihua
    Xu, Y. Jun
    Liu, Zejun
    Mao, Boyang
    WATER RESOURCES MANAGEMENT, 2024, 38 (13) : 5179 - 5194
  • [3] Deep Learning Applied to Data-driven Dynamic Characterization of Hysteretic Piezoelectric Micromanipulators
    Soares Barbosa, Matheus Patrick
    Rakotondrabe, Micky
    Hultmann Ayala, Helon Vicente
    IFAC PAPERSONLINE, 2020, 53 (02): : 8559 - 8564
  • [4] Data-Driven Estimation of Frequency Response From Ambient Synchrophasor Measurements
    Phuc Huynh
    Zhu, Hao
    Chen, Qianli
    Elbanna, Ahmed E.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (06) : 6590 - 6599
  • [5] Effective data-driven precision medicine by cluster-applied deep reinforcement learning
    Oh, Sang Ho
    Lee, Su Jin
    Park, Jongyoul
    KNOWLEDGE-BASED SYSTEMS, 2022, 256
  • [6] Data-Driven Hybrid Internal Temperature Estimation Approach for Battery Thermal Management
    Liu, Kailong
    Li, Kang
    Peng, Qiao
    Guo, Yuanjun
    Zhang, Li
    COMPLEXITY, 2018,
  • [7] Forward Dynamics Estimation from Data-Driven Inverse Dynamics Learning??
    Libera, Alberto Dalla
    Giacomuzzo, Giulio
    Carli, Ruggero
    Nikovski, Daniel
    Romeres, Diego
    IFAC PAPERSONLINE, 2023, 56 (02): : 519 - 524
  • [8] Data-driven models for accurate estimation of fuel consumption using Deep Learning techniques
    Gracia-Berna, Antonio
    Vega-Astorga, Ruben
    del Pozo-Dominguez, Maria
    Lopez-Leones, Javier
    2023 IEEE/AIAA 42ND DIGITAL AVIONICS SYSTEMS CONFERENCE, DASC, 2023,
  • [9] Data-Driven Day-Ahead PV Estimation Using Hybrid Deep Learning
    Zhang, Yue
    Jin, Chenrui
    Sharma, Ratnesh K.
    Srivastava, Anurag K.
    2019 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2019,
  • [10] Prediction of daily average seawater temperature using data-driven and deep learning algorithms
    Ozbek, Arif
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (01): : 365 - 383