Simultaneous approximation by greedy algorithms

被引:0
作者
D. Leviatan
V. N. Temlyakov
机构
[1] Tel Aviv University,School of Mathematical Sciences, Sackler Faculty of Exact Sciences
[2] University of South Carolina,Department of Mathematics
来源
Advances in Computational Mathematics | 2006年 / 25卷
关键词
greedy algorithms; convergence; simultaneous approximation;
D O I
暂无
中图分类号
学科分类号
摘要
We study nonlinear m-term approximation with regard to a redundant dictionary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {D}$\end{document} in a Hilbert space H. It is known that the Pure Greedy Algorithm (or, more generally, the Weak Greedy Algorithm) provides for each f∈H and any dictionary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {D}$\end{document} an expansion into a series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=\sum_{j=1}^{\infty}c_{j}(f)\varphi_{j}(f),\quad\varphi_{j}(f)\in \mathcal {D},\ j=1,2,\ldots,$$\end{document} with the Parseval property: ‖f‖2=∑j|cj(f)|2. Following the paper of A. Lutoborski and the second author we study analogs of the above expansions for a given finite number of functions f1,. . .,fN with a requirement that the dictionary elements φj of these expansions are the same for all fi, i=1,. . .,N. We study convergence and rate of convergence of such expansions which we call simultaneous expansions.
引用
收藏
页码:73 / 90
页数:17
相关论文
共 53 条
  • [1] Barron A.R.(1993)Universal approximation bounds for superposition of IEEE Trans. Inform. Theory 39 930-945
  • [2] Cohen A.(2000) sigmoidal functions Constr. Approx. 16 85-113
  • [3] DeVore R.A.(1997)Restricted nonlinear approximation Constr. Approx. 13 57-98
  • [4] Hochmuth R.(1992)Adaptive greedy approximations Amer. J. Math. 114 737-785
  • [5] Davis G.(1995)Compression of wavelet decompositions J. Fourier Anal. Appl. 2 29-48
  • [6] Mallat S.(1996)Nonlinear approximation by trigonometric sums Adv. Comput. Math. 5 173-187
  • [7] Avellaneda M.(1997)Some remarks on Greedy Algorithms J. Complexity 13 489-508
  • [8] DeVore R.(1993)Nonlinear approximation in finite-dimensional spaces Appl. Comput. Harmon. Anal. 1 100-115
  • [9] Jawerth B.(1997)Unconditional bases are optimal bases for data compression and for statistical estimation Constr. Approx. 13 187-220
  • [10] Popov V.(1981)Rate of convex approximation in non-Hilbert spaces J. Amer. Statist. Assoc. 76 817-823