An Eigenvalue Problem Involving the (p, q)-Laplacian With a Parametric Boundary Condition

被引:0
作者
Luminiţa Barbu
Andreea Burlacu
Gheorghe Moroşanu
机构
[1] Ovidius University,Faculty of Mathematics and Informatics
[2] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
[3] Academy of Romanian Scientists,undefined
来源
Mediterranean Journal of Mathematics | 2023年 / 20卷
关键词
Eigenvalues; -Laplacian; variational methods; Krasnosel’skiĭ genus; Ljusternik-Schnirelmann theory; manifold; 35J60; 35J92; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, be a bounded domain with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}. Consider the following nonlinear eigenvalue problem -Δpu-Δqu+ρ(x)∣u∣q-2u=λα(x)∣u∣r-2uinΩ,∂u∂νpq+γ(x)∣u∣q-2u=λβ(x)∣u∣r-2uon∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} -\Delta _p u-\Delta _q u+\rho (x) \mid u\mid ^{q-2}u=\lambda \alpha (x) \mid u\mid ^{r-2}u\ \ \text{ in } ~ \Omega ,\\ \frac{\partial u}{\partial \nu _{pq}}+\gamma (x)\mid u\mid ^{q-2}u=\lambda \beta (x) \mid u\mid ^{r-2}u ~ \text{ on } ~ \partial \Omega , \end{array}\right. \end{aligned}$$\end{document}where p,q,r∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,q,r\in (1,\infty )$$\end{document} with p≠q;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ne q;$$\end{document}α,ρ∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \rho \in L^{\infty }(\Omega )$$\end{document}, β,γ∈L∞(∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta , \gamma \in L^{\infty }(\partial \Omega )$$\end{document}, Δθu:=div(‖∇u‖θ-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\theta }u:= \text{ div }~ (\Vert \nabla u\Vert ^{\theta -2}\nabla u)$$\end{document}, θ∈{p,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in \{p,q\}$$\end{document}, and ∂u∂νpq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial u}{\partial \nu _{pq}}$$\end{document} denotes the conormal derivative corresponding to the differential operator -Δp-Δq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta _p -\Delta _q$$\end{document}. Under suitable assumptions, we provide the full description of the spectrum of the above problem in eight cases out of ten, and for the other two complementary cases, we obtain subsets of the corresponding spectra. Notice that when some of the potentials α,β,ρ,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta , \rho , \gamma $$\end{document} are null functions, the above eigenvalue problem reduces to Neumann-, Robin- or Steklov-type problems, and so we obtain the spectra of these particular eigenvalue problems.
引用
收藏
相关论文
共 42 条
  • [1] Barbu L(2021)Full description of the eigenvalue set of the J. Differ. Eqs. 290 1-16
  • [2] Moroşanu G(2019)-Laplacian with a Steklov-like boundary condition Ann. Mat. Pura Appl. 198 749-772
  • [3] Bonheure D(2002)On the Born-Infeld equation for electrostatic fields with a superposition of point charges J. Math. Phys. 43 5698-5706
  • [4] Colasuonno F(2000)Born-Infeld type equations for electrostatic fields Arch. Ration. Mech. Anal. 154 297-324
  • [5] Földes J(1998)Solitons in several space dimensions: Derrick’s problem and infinitely many solutions Rev. Math. Phys. 10 315-344
  • [6] Fortunato D(2002)Soliton like solutions of a Lorentz invariant equation in dimension 3 Commun. Pure Appl. Anal. 4 9-22
  • [7] Orsina L(1991)On the stationary solutions of generalized reaction diffusion equations with p &q-Laplacian J. Differ. Equ. 90 1-30
  • [8] Pisani L(2005)Regularity and existence of solutions of elliptic equations with p, q-growth conditions Bull. Belg. Math. Soc. Simon Stevin 12 505-519
  • [9] Benci V(2006)Spectral asymptotics for the Laplacian under an eigenvalue dependent boundary condition Asymptot. Anal. 46 43-52
  • [10] D’Avenia P(2022)Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions Adv. Nonlinear Anal. 12 304-335