Data-driven curation process for describing the blood glucose management in the intensive care unit

被引:0
作者
Aldo Robles Arévalo
Jason H. Maley
Lawrence Baker
Susana M. da Silva Vieira
João M. da Costa Sousa
Stan Finkelstein
Roselyn Mateo-Collado
Jesse D. Raffa
Leo Anthony Celi
Francis DeMichele
机构
[1] Instituto Superior Técnico,IDMEC
[2] Universidade de Lisboa,undefined
[3] Beth Israel Deaconess Medical Center,undefined
[4] RAND Corporation,undefined
[5] Massachusetts Institute of Technology,undefined
[6] Rush University Medical Center,undefined
[7] Harvard T.H. Chan School of Public Health,undefined
[8] Landmark Health,undefined
来源
Scientific Data | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Analysis of real-world glucose and insulin clinical data recorded in electronic medical records can provide insights into tailored approaches to clinical care, yet presents many analytic challenges. This work makes publicly available a dataset that contains the curated entries of blood glucose readings and administered insulin on a per-patient basis during ICU admissions in the Medical Information Mart for Intensive Care (MIMIC-III) database version 1.4. Also, the present study details the data curation process used to extract and match glucose values to insulin therapy. The curation process includes the creation of glucose-insulin pairing rules according to clinical expert-defined physiologic and pharmacologic parameters. Through this approach, it was possible to align nearly 76% of insulin events to a preceding blood glucose reading for nearly 9,600 critically ill patients. This work has the potential to reveal trends in real-world practice for the management of blood glucose. This data extraction and processing serve as a framework for future studies of glucose and insulin in the intensive care unit.
引用
收藏
相关论文
共 50 条
  • [31] Prospective evaluation of admission blood glucose levels in the intensive care unit
    Fish, LH
    Moore, AL
    Anderson, RL
    DIABETES, 2005, 54 : A75 - A75
  • [32] Blood glucose variability is associated with mortality in the surgical intensive care unit
    Dossett, Lesly A.
    Cao, Hanqing
    Mowery, Nathan T.
    Dortch, Marcus J.
    Morris, John M., Jr.
    May, Addison K.
    AMERICAN SURGEON, 2008, 74 (08) : 679 - 685
  • [33] IMPLEMENTATION OF A BLOOD MANAGEMENT PROGRAM IN THE INTENSIVE CARE UNIT (ICU)
    Umezawa Makikado, L. D.
    Chico Fernandez, M.
    Garcia Fuentes, C.
    Molina Collado, Z.
    Torres Sanchez, E.
    Marin Mateos, H.
    Catalan Gonzalez, M.
    Sanchez-Izquierdo Riera, J. A.
    Montejo Gonzalez, J. C.
    INTENSIVE CARE MEDICINE, 2013, 39 : S522 - S523
  • [34] EnzymeMap: curation, validation and data-driven prediction of enzymatic reactions
    Heid, Esther
    Probst, Daniel
    Green, William H.
    Madsen, Georg K. H.
    CHEMICAL SCIENCE, 2023, 14 (48) : 14229 - 14242
  • [35] The Search Continues for Optimal Intensive Care Unit Glucose Management and Measurement
    Long, Micah T.
    Sheehy, Ann M.
    Coursin, Douglas B.
    MAYO CLINIC PROCEEDINGS, 2017, 92 (07) : 1011 - 1014
  • [36] Data-driven process control and exception handling in process management systems
    Rinderle, Stefanie
    Reichert, Manfred
    ADVANCED INFORMATION SYSTEMS ENGINEERING, PROCEEDINGS, 2006, 4001 : 273 - 287
  • [37] Glucose control in the intensive care unit
    Fahy, Brenda G.
    Sheehy, Ann M.
    Coursin, Douglas B.
    CRITICAL CARE MEDICINE, 2009, 37 (05) : 1769 - 1776
  • [38] ECONOMIC EVALUATION OF BLOOD GLUCOSE POINT-OF-CARE TESTING IN THE INTENSIVE CARE UNIT
    Steuten, L. M. G.
    Kip, M.
    Hooijdonk, R.
    Monteban, H.
    Spronk, P.
    Schultz, M.
    VALUE IN HEALTH, 2014, 17 (03) : A250 - A250
  • [39] Glucose variability in intensive care unit
    Schaal, J. -V.
    Libert, N.
    De Rudnicki, S.
    Auroy, Y.
    Merat, S.
    ANNALES FRANCAISES D ANESTHESIE ET DE REANIMATION, 2012, 31 (12): : 950 - 960
  • [40] Data-Driven Disturbance Estimation and Control With Application to Blood Glucose Regulation
    Novara, Carlo
    Rabbone, Ivana
    Tinti, Davide
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (01) : 48 - 62