Data-driven curation process for describing the blood glucose management in the intensive care unit

被引:0
|
作者
Aldo Robles Arévalo
Jason H. Maley
Lawrence Baker
Susana M. da Silva Vieira
João M. da Costa Sousa
Stan Finkelstein
Roselyn Mateo-Collado
Jesse D. Raffa
Leo Anthony Celi
Francis DeMichele
机构
[1] Instituto Superior Técnico,IDMEC
[2] Universidade de Lisboa,undefined
[3] Beth Israel Deaconess Medical Center,undefined
[4] RAND Corporation,undefined
[5] Massachusetts Institute of Technology,undefined
[6] Rush University Medical Center,undefined
[7] Harvard T.H. Chan School of Public Health,undefined
[8] Landmark Health,undefined
来源
Scientific Data | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Analysis of real-world glucose and insulin clinical data recorded in electronic medical records can provide insights into tailored approaches to clinical care, yet presents many analytic challenges. This work makes publicly available a dataset that contains the curated entries of blood glucose readings and administered insulin on a per-patient basis during ICU admissions in the Medical Information Mart for Intensive Care (MIMIC-III) database version 1.4. Also, the present study details the data curation process used to extract and match glucose values to insulin therapy. The curation process includes the creation of glucose-insulin pairing rules according to clinical expert-defined physiologic and pharmacologic parameters. Through this approach, it was possible to align nearly 76% of insulin events to a preceding blood glucose reading for nearly 9,600 critically ill patients. This work has the potential to reveal trends in real-world practice for the management of blood glucose. This data extraction and processing serve as a framework for future studies of glucose and insulin in the intensive care unit.
引用
收藏
相关论文
共 50 条
  • [1] Data-driven curation process for describing the blood glucose management in the intensive care unit
    Robles Arevalo, Aldo
    Maley, Jason H.
    Baker, Lawrence
    Da Silva Vieira, Susana M.
    Da Costa Sousa, Joao M.
    Finkelstein, Stan
    Mateo-Collado, Roselyn
    Raffa, Jesse D.
    Celi, Leo Anthony
    DeMichele, Francis, III
    SCIENTIFIC DATA, 2021, 8 (01)
  • [2] Data-driven analysis of blood glucose management effectiveness
    Nannings, B
    Abu-Hanna, A
    Bosman, RJ
    ARTIFICIAL INTELLIGENCE IN MEDICINE, PROCEEDINGS, 2005, 3581 : 53 - 57
  • [3] Blood glucose control in the intensive care unit: Where is the data?
    Sebastian Casillas
    Edgar Jauregui
    Salim Surani
    Joseph Varon
    World Journal of Meta-Analysis, 2019, 7 (08) : 399 - 405
  • [4] A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit
    Yee, Christopher R.
    Narain, Niven R.
    Akmaev, Viatcheslav R.
    Vemulapalli, Vijetha
    BIOMEDICAL INFORMATICS INSIGHTS, 2019, 11
  • [5] Performance of Blood Glucose Management Protocols in HTAA Intensive Care Unit
    Luqman, M. H.
    Zulkifly, W. Zuhriraihan W. M.
    Rosly, C. Zafirah
    Khalid, Khalijah
    Jamaludin, Ummu K.
    Ralib, Azrina Md.
    Nor, Mohd Basri Mat
    2016 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2016, : 156 - 161
  • [6] Managing blood glucose in the intensive care unit
    Adigbli, Derick K.
    Hammond, Naomi E.
    Finfer, Simon
    INTENSIVE CARE MEDICINE, 2025, 51 (02) : 442 - 443
  • [7] Nurse-Directed Blood Glucose Management in a Medical Intensive Care Unit
    Compton, Friederike
    Ahlborn, Robert
    Weidehoff, Torsten
    CRITICAL CARE NURSE, 2017, 37 (03) : 30 - 40
  • [8] Data-Driven Prediction And Risk Score Model For Tachycardia Event In The Intensive Care Unit
    Yoon, J.
    Mu, L.
    Chen, L.
    Dubrawski, A. W.
    Hravnak, M.
    Pinsky, M. R.
    Clermont, G.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [9] Accuracy of blood glucose measurements in the intensive care unit
    F Staric
    U Kovacic
    B Ozek
    R Kaps
    Critical Care, 9 (Suppl 1):
  • [10] Managing blood glucose control in the intensive care unit
    Gunst, Jan
    Umpierrez, Guillermo E.
    van den Berghe, Greet
    INTENSIVE CARE MEDICINE, 2024, 50 (12) : 2171 - 2174