Representing subalgebras as retracts of finite subdirect powers

被引:0
作者
Keith A. Kearnes
Alexander Rasstrigin
机构
[1] University of Colorado,Department of Mathematics
[2] Volgograd State Socio-Pedagogical University,Department of Higher Mathematics and Physics
来源
Algebra universalis | 2020年 / 81卷
关键词
Formation; Higher commutator; Nilpotent; Pseudovariety; Retract; Subalgebra; Subdirect power; Supernilpotent; Two term condition; 08A05; 08A30; 08A60; 20F17;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document} is an algebra that is supernilpotent with respect to the 2-term higher commutator, and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}$$\end{document} is a subalgebra of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document}, then B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}$$\end{document} is representable as a retract of a finite subdirect power of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb A$$\end{document}.
引用
收藏
相关论文
共 12 条
  • [1] Aichinger E(2010)Some applications of higher commutators in Mal’cev algebras Algebra Univers. 63 367-403
  • [2] Mudrinski N(1999)Congruence modular varieties with small free spectra Algebra Univers. 42 165-181
  • [3] Kearnes KA(2010)An axiomatic formation that is not a variety J. Group Theory 13 233-241
  • [4] Kearnes Keith A(1998)The relationship between two commutators Int. J. Algebra Comput. 8 497-531
  • [5] Kearnes KA(2020)Is supernilpotence super nilpotence? Algebra Univers. 81 3-476
  • [6] Szendrei Á(1992)Three remarks on the modular commutator Algebra Univers. 29 455-158
  • [7] Kearnes KA(2018)Higher commutator theory for congruence modular varieties J. Algebra 513 133-90
  • [8] Szendrei Á(1970)A note on formations of finite nilpotent groups Bull. Lond. Math. Soc. 2 91-undefined
  • [9] Kiss EW(1970)Characteristic subgroups of free groups Bull. Lond. Math. Soc. 2 87-undefined
  • [10] Moorhead A(undefined)undefined undefined undefined undefined-undefined