Computation of functions on n bits by asynchronous clocking of cellular automata

被引:0
作者
Michael Vielhaber
机构
[1] Universidad Austral de Chile,Instituto de Matemáticas
[2] Hochschule Bremerhaven,undefined
[3] FB2,undefined
[4] An der Karlstadt 8,undefined
来源
Natural Computing | 2013年 / 12卷
关键词
Cellular automaton; Asynchronous; Update rule; Universality; Temporal order; Clocking-computable;
D O I
暂无
中图分类号
学科分类号
摘要
Can a fixed cellular automaton compute different functions on any n-bit inputs, by providing only the n input bits as data and simulate the function only through the clocking scheme (a/synchronicity)? The perhaps surprising answer is: yes! The elementary cellular automaton with Wolfram number 57, as well as several CAs with 4 input cells are capable to compute those bijective functions on n bits that are equivalent to an even permutation on the domain {0,…,2n−1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,\dots, 2^n-1\}$$\end{document}, at least for n ≤ 10. To distinguish between functions, it suffices to vary the temporal order of updating the n cells in a deterministic way. We also characterize the non-bijective functions so computable, where we now need temporal schemes, which are not fully asynchronous. We start with pattern transformations F2n∋v↦w∈F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_2^n\ni v\, \mapsto \, w \in{\mathbb F}_2^n$$\end{document}. The thread of all this is a novel paradigm: the algorithm is neither hard-wired (in the CA), nor in the program or data (initial configuration), but only in the temporal order of firing cells. And temporal order is pattern-universal.
引用
收藏
页码:307 / 322
页数:15
相关论文
共 32 条
  • [31] Intrinsically universal n-dimensional quantum cellular automata
    Arrighi, Pablo
    Grattage, Jonathan
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (06) : 1883 - 1898
  • [32] Transferring functions of biological immune systems to communication processes in disasters using cellular automata
    Schmiedgen, Peter
    Wiesenhuetter, Sebastian
    Noennig, Joerg Rainer
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS 18TH ANNUAL CONFERENCE, KES-2014, 2014, 35 : 1333 - 1341