Computation of functions on n bits by asynchronous clocking of cellular automata

被引:0
|
作者
Michael Vielhaber
机构
[1] Universidad Austral de Chile,Instituto de Matemáticas
[2] Hochschule Bremerhaven,undefined
[3] FB2,undefined
[4] An der Karlstadt 8,undefined
来源
Natural Computing | 2013年 / 12卷
关键词
Cellular automaton; Asynchronous; Update rule; Universality; Temporal order; Clocking-computable;
D O I
暂无
中图分类号
学科分类号
摘要
Can a fixed cellular automaton compute different functions on any n-bit inputs, by providing only the n input bits as data and simulate the function only through the clocking scheme (a/synchronicity)? The perhaps surprising answer is: yes! The elementary cellular automaton with Wolfram number 57, as well as several CAs with 4 input cells are capable to compute those bijective functions on n bits that are equivalent to an even permutation on the domain {0,…,2n−1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,\dots, 2^n-1\}$$\end{document}, at least for n ≤ 10. To distinguish between functions, it suffices to vary the temporal order of updating the n cells in a deterministic way. We also characterize the non-bijective functions so computable, where we now need temporal schemes, which are not fully asynchronous. We start with pattern transformations F2n∋v↦w∈F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_2^n\ni v\, \mapsto \, w \in{\mathbb F}_2^n$$\end{document}. The thread of all this is a novel paradigm: the algorithm is neither hard-wired (in the CA), nor in the program or data (initial configuration), but only in the temporal order of firing cells. And temporal order is pattern-universal.
引用
收藏
页码:307 / 322
页数:15
相关论文
共 50 条
  • [21] COMPUTATION THEORY OF CELLULAR AUTOMATA
    WOLFRAM, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (01) : 15 - 57
  • [22] Randomized computation with cellular automata
    Chopard, B
    Tomassini, M
    CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 71 - 80
  • [23] RELIABLE COMPUTATION WITH CELLULAR AUTOMATA
    GACS, P
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1986, 32 (01) : 15 - 78
  • [24] Computation in reversible cellular automata
    Morita, Kenichi
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2012, 41 (06) : 569 - 581
  • [25] Foreword: asynchronous cellular automata and applications
    Alberto Dennunzio
    Nazim Fatès
    Enrico Formenti
    Natural Computing, 2013, 12 : 537 - 538
  • [26] On the complementation of asynchronous cellular Buchi automata
    Muscholl, A
    THEORETICAL COMPUTER SCIENCE, 1996, 169 (02) : 123 - 145
  • [27] Scalable Asynchronous Execution of Cellular Automata
    Folino, Gianluigi
    Giordano, Andrea
    Mastroianni, Carlo
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
  • [28] Order Independence in Asynchronous Cellular Automata
    Macauley, Matthew
    McCammond, Jon
    Mortveit, Henning S.
    JOURNAL OF CELLULAR AUTOMATA, 2008, 3 (01) : 37 - 56
  • [29] A Guided Tour of Asynchronous Cellular Automata
    Fates, Nazim
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, 2013, 8155 : 15 - 30
  • [30] Synchronous and asynchronous updating in cellular automata
    Schönfisch, B
    de Roos, A
    CELLULAR AUTOMATA: RESEARCH TOWARDS INDUSTRY, 1998, : 42 - 46