Computation of functions on n bits by asynchronous clocking of cellular automata

被引:0
|
作者
Michael Vielhaber
机构
[1] Universidad Austral de Chile,Instituto de Matemáticas
[2] Hochschule Bremerhaven,undefined
[3] FB2,undefined
[4] An der Karlstadt 8,undefined
来源
Natural Computing | 2013年 / 12卷
关键词
Cellular automaton; Asynchronous; Update rule; Universality; Temporal order; Clocking-computable;
D O I
暂无
中图分类号
学科分类号
摘要
Can a fixed cellular automaton compute different functions on any n-bit inputs, by providing only the n input bits as data and simulate the function only through the clocking scheme (a/synchronicity)? The perhaps surprising answer is: yes! The elementary cellular automaton with Wolfram number 57, as well as several CAs with 4 input cells are capable to compute those bijective functions on n bits that are equivalent to an even permutation on the domain {0,…,2n−1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,\dots, 2^n-1\}$$\end{document}, at least for n ≤ 10. To distinguish between functions, it suffices to vary the temporal order of updating the n cells in a deterministic way. We also characterize the non-bijective functions so computable, where we now need temporal schemes, which are not fully asynchronous. We start with pattern transformations F2n∋v↦w∈F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_2^n\ni v\, \mapsto \, w \in{\mathbb F}_2^n$$\end{document}. The thread of all this is a novel paradigm: the algorithm is neither hard-wired (in the CA), nor in the program or data (initial configuration), but only in the temporal order of firing cells. And temporal order is pattern-universal.
引用
收藏
页码:307 / 322
页数:15
相关论文
共 50 条
  • [1] Computation of functions on n bits by asynchronous clocking of cellular automata
    Vielhaber, Michael
    NATURAL COMPUTING, 2013, 12 (03) : 307 - 322
  • [2] Reversible computation in asynchronous cellular automata
    Lee, J
    Peper, F
    Adachi, S
    Morita, K
    Mashiko, S
    UNCONVENTIONAL MODELS IN COMPUTATION, PROCEEDINGS, 2002, 2509 : 220 - 229
  • [3] Delay-insensitive computation in asynchronous cellular automata
    Lee, J
    Adachi, S
    Peper, F
    Mashiko, S
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2005, 70 (02) : 201 - 220
  • [4] Foreword: asynchronous cellular automata and nature-inspired computation
    Dennunzio, Alberto
    Formenti, Enrico
    Peper, Ferdinand
    Umeo, Hiroshi
    NATURAL COMPUTING, 2012, 11 (02) : 267 - 268
  • [5] Computation based on signal random fluctuation in asynchronous cellular automata
    Xu, Wen-Li
    Lee, Jia
    2016 FOURTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2016, : 249 - 253
  • [6] Foreword: asynchronous cellular automata and nature-inspired computation
    Alberto Dennunzio
    Enrico Formenti
    Ferdinand Peper
    Hiroshi Umeo
    Natural Computing, 2012, 11 : 267 - 268
  • [7] Asynchronous cellular automata and asynchronous automata for pomsets
    Kuske, D
    CONCUR'98: CONCURRENCY THEORY, 1998, 1466 : 517 - 532
  • [8] ASYNCHRONOUS AUTOMATA VERSUS ASYNCHRONOUS CELLULAR-AUTOMATA
    PIGHIZZINI, G
    THEORETICAL COMPUTER SCIENCE, 1994, 132 (1-2) : 179 - 207
  • [9] On asynchronous cellular automata
    Hansson, AÅ
    Mortveit, HS
    Reidys, CM
    ADVANCES IN COMPLEX SYSTEMS, 2005, 8 (04): : 521 - 538
  • [10] ASYNCHRONOUS MAPPINGS AND ASYNCHRONOUS CELLULAR-AUTOMATA
    CORI, R
    METIVIER, Y
    ZIELONKA, W
    INFORMATION AND COMPUTATION, 1993, 106 (02) : 159 - 202