Differential Equations in Hilbert Space with Dissipative Symbols

被引:0
作者
A. A. Shkalikov
机构
关键词
Differential Equation; Hilbert Space; Linear Operator; Cauchy Problem; Operator Symbol;
D O I
10.1023/A:1022269315945
中图分类号
学科分类号
摘要
In this article equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$T\left( { - i\frac{d}{{dt}}} \right)u\left( t \right) = T_0 - iT_1 u'\left( t \right) + ... + \left( { - i} \right)^n T_n u^{\left( n \right)} \left( t \right) = 0t \in \left( {0,\infty } \right)$$ \end{document} are studied; here u(t) is a function with values in the Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{H}$$ \end{document} and the coefficients Tj, j = 1,...,n are linear operators, possibly unbounded, in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{H}$$ \end{document}. The operator symbol T(λ) is assumed to be dissipative, that is, to satisfy the condition: Im(T(λ)x,x) ≥ 0 for λ ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document} and x ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}(T). When the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{H}$$ \end{document} is finite-dimensional, theorems of factorization for the symbol T(λ) and theorems on the unique solvability for the truncated Cauchy problem on the half-axis t ∈ [0,∞) are proved. In the infinite-dimensional space we can obtain identities for solutions of the equations considered. From these identities it is possible to deduce a priori estimates for the solutions.
引用
收藏
页码:1571 / 1588
页数:17
相关论文
共 11 条
[1]  
Cooper J.(1995)The Spectrum of a Hyperbolic Evolution Operator J. Funct. Analysis 133 301-328
[2]  
Koch H.(1967)On stability of algebraic multiplicity of an analytic operator function and on perturbations of its eigenvalues and eigenvectors Dokl. Akad. Nauk SSSR 173 1251-1254
[3]  
Eni V. M.(1971)On the completeness of eigenfunction of certain classes of nonself-ajoint linear operators Russian Math. Surveys 26 295-305
[4]  
Keldysh M. V.(1981)Vibrations of an elastic semicylinder and associated self-adjoint quadric pencils Trudy Seminara im. I. G. Petrovskogo 6 97-146
[5]  
Kostyuchenko A. G.(1990)Linear independence and minimality of root elements of certain nonlinear spectral problems Siberian Math. Journal 31 147-166
[6]  
Orazov M. B.(1988)On principles of selection and properties of the part of eigen and associated elements of operator pencils Moscow Univ. Math. Bull. 4 16-25
[7]  
Radzievskii G. V.(1985)On the minimality and completeness of systems associated with the parts of the root elements of quadratic operator pencils Dokl. Akad. Nauk SSSR 285 1334-1339
[8]  
Shkalikov A. A.(1990)Elliptic equations in Hilbert space and associated spectral problems J. Soviet Math. 4 2399-2367
[9]  
Shkalikov A. A.(1996)Operator pencils arising in elasticity and hydrodynamics: the instability index formula Operator Theory: Adv. and Appl. 87 358-385
[10]  
Shkalikov A. A.(undefined)undefined undefined undefined undefined-undefined