Autoreducibility of NP-Complete Sets under Strong Hypotheses

被引:0
作者
John M. Hitchcock
Hadi Shafei
机构
[1] University of Wyoming,Department of Computer Science
来源
computational complexity | 2018年 / 27卷
关键词
68Q17 Computational difficulty of problems; NP-completeness; autoreducibility; genericity;
D O I
暂无
中图分类号
学科分类号
摘要
We study the polynomial-time autoreducibility of NP-complete sets and obtain separations under strong hypotheses for NP. Assuming there is a p-generic set in NP, we show the following: For every k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k \geq 2}$$\end{document}, there is a k-T-complete set for NP that is k-T-autoreducible, but is not k-tt-autoreducible or (k − 1)-T-autoreducible.For every k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k \geq 3}$$\end{document}, there is a k-tt-complete set for NP that is k-tt-autoreducible, but is not (k − 1)-tt-autoreducible or (k − 2)-T-autoreducible.There is a tt-complete set for NP that is tt-autoreducible, but is not btt-autoreducible. Under the stronger assumption that there is a p-generic set in NP ∩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cap}$$\end{document} coNP, we show: For every k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k \geq 2}$$\end{document}, there is a k-tt-complete set for NP that is k-tt-autoreducible, but is not (k − 1)-T-autoreducible. Our proofs are based on constructions from separating NP-completeness notions. For example, the construction of a 2-T-complete set for NP that is not 2-tt-complete also separates 2-T-autoreducibility from 2-tt-autoreducibility.
引用
收藏
页码:63 / 97
页数:34
相关论文
共 18 条
[1]  
Ambos-Spies K.(2000)Separating NP-Completeness Notions Under Strong Hypotheses. Journal of Computer and System Sciences 61 335-361
[2]  
Bentzien L.(1987)Diagonalizations over polynomial time computable sets. Theoretical Computer Science 51 177-204
[3]  
Ambos-Spies K.(1992)On being incoherent without being very hard Computational Complexity 2 1-17
[4]  
Fleischhack H.(2000)Separating complexity classes using autoreducibility SIAM Journal on Computing 29 1497-1520
[5]  
Huwig H.(2005)A Post’s Program for Complexity Theory Bulletin of the EATCS 85 41-51
[6]  
Beigel R.(1975)A comparison of polynomial-time reducibilities. Theoretical Computer Science 1 103-123
[7]  
Feigenbaum J.(2004)Bi-immunity separates strong NP-completeness notions. Information and Computation 188 116-126
[8]  
Buhrman H.(undefined)undefined undefined undefined undefined-undefined
[9]  
Fortnow L.(undefined)undefined undefined undefined undefined-undefined
[10]  
van Melkebeek D.(undefined)undefined undefined undefined undefined-undefined