Complex Dynamics of a Stochastic SIR Epidemic Model with Vertical Transmission and Varying Total Population Size

被引:0
作者
Xiao-Bing Zhang
Liang Zheng
机构
[1] Lanzhou University of Technology,Department of Applied Mathematics
来源
Journal of Nonlinear Science | 2023年 / 33卷
关键词
Stochastic epidemic model; Threshold; Invariant measure; Extinction; Persistence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a stochastic SIR epidemic model with vertical transmission and varying total population size. Firstly, we prove the existence and uniqueness of the global positive solution for the stochastic model. Secondly, we establish three thresholds λ1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{1},$$\end{document}λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2} $$\end{document} and λ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{3}$$\end{document} of the model. The disease will die out when λ1<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{1}<0 $$\end{document} and λ2<0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2}<0,$$\end{document} or λ1>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{1}>0$$\end{document} and λ3<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{3}<0$$\end{document}, but the disease will persist when λ1<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{1}<0$$\end{document} and λ2>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2}>0,$$\end{document} or λ1>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda _{1}>0$$\end{document} and λ3>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{3}>0$$\end{document} and the law of the solution converge to a unique invariant measure. Moreover, we find that when λ1<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{1}<0$$\end{document} some stochastic perturbations can increase the threshold λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2}$$\end{document}, while others can decrease the threshold λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2}$$\end{document}. That is, some stochastic perturbations enhance the spread of the disease, but others are just the opposite. On the other hand, when λ1>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{1}>0$$\end{document}, some stochastic perturbations increase or decrease the threshold λ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{3}$$\end{document} with different parameter sets. Finally, we give some numerical examples to illustrate obtained results.
引用
收藏
相关论文
共 84 条
[1]  
Li MY(2001)Global dynamics of an SEIR epidemic model with vertical transmission SIAM J. Appl. Math. 62 58-69
[2]  
Smith HL(2002)The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission Math. Comput. Model. 36 1039-1057
[3]  
Wang L(2001)Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape Science 294 813-817
[4]  
Lu Z(2005)Exclusion and persistence in deterministic and stochastic chemostat models J. Differ. Equ. 217 26-53
[5]  
Chi X(2002)Allee effects in stochastic populations Oikos 96 389-401
[6]  
Chen L(2009)On competitive Lotka-Volterra model in random environments J. Math. Anal. Appl. 357 154-170
[7]  
Keeling MJ(2002)Environmental brownian noise suppresses explosions in population dynamics Stoch. Process. Appl. 97 95-110
[8]  
Woolhouse MEJ(2018)Asymptotic properties of a stochastic SIR epidemic model with Beddington-Deangelis incidence rate J. Dyn. Diff. Equ. 30 93-106
[9]  
Shaw DJ(2021)The stationary distribution of a stochastic SIQS epidemic model with varying total population size Appl. Math. Lett. 116 106974-187
[10]  
Louise M(2018)Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules Phys. A 501 178-902