Improving stability and transferability of machine learned interatomic potentials using physically informed bounding potentials

被引:0
|
作者
H. Zhou
D. Dickel
C. D. Barrett
机构
[1] Mississippi State University,Department of Mechanical Engineering
来源
Journal of Materials Research | 2023年 / 38卷
关键词
Machine learning; Zinc; Interatomic potentials;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:5106 / 5113
页数:7
相关论文
共 50 条
  • [1] Improving stability and transferability of machine learned interatomic potentials using physically informed bounding potentials
    Zhou, H.
    Dickel, D.
    Barrett, C. D.
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5106 - 5113
  • [2] Transferability of interatomic potentials for silicene
    Mazdziarz, Marcin
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2023, 14 : 574 - 585
  • [3] Investigating Ionic Diffusivity in Amorphous LiPON using Machine-Learned Interatomic Potentials
    Seth, Aqshat
    Kulkarni, Rutvij Pankaj
    Sai Gautam, Gopalakrishnan
    ACS MATERIALS AU, 2025,
  • [4] Benchmarking structural evolution methods for training of machine learned interatomic potentials
    Waters, Michael J.
    Rondinelli, James M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (38)
  • [5] A FRAMEWORK FOR A GENERALIZATION ANALYSIS OF MACHINE-LEARNED INTERATOMIC POTENTIALS
    Ortner, Christoph
    Wang, Yangshuai
    MULTISCALE MODELING & SIMULATION, 2023, 21 (03) : 1053 - 1080
  • [6] Machine learned interatomic potentials for modeling interfacial heat transport in Ge/GaAs
    Wyant, Spencer
    Rohskopf, Andrew
    Henry, Asegun
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 200
  • [7] Adaptive loss weighting for machine learning interatomic potentials
    Ocampo, Daniel
    Posso, Daniela
    Namakian, Reza
    Gao, Wei
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
  • [8] Lattice dynamics simulation using machine learning interatomic potentials
    Ladygin, V. V.
    Korotaev, P. Yu
    Yanilkin, A., V
    Shapeev, A., V
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 172
  • [9] Construction of Machine Learning Interatomic Potentials for Metals
    Dmitriev, S. V.
    Kistanov, A. A.
    Kosarev, I. V.
    Scherbinin, S. A.
    Shapeev, A. V.
    RUSSIAN PHYSICS JOURNAL, 2024, 67 (09) : 1408 - 1413
  • [10] Towards better efficiency of interatomic linear machine learning potentials
    Goryaeva, Alexandra M.
    Maillet, Jean-Bernard
    Marinica, Mihai-Cosmin
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 166 : 200 - 209