Structural and dielectric properties of ion beam deposited titanium oxynitride thin films

被引:0
作者
Liuwei Jia
Huiping Lu
Yujing Ran
Shujun Zhao
Haonan Liu
Yinglan Li
Zhaotan Jiang
Zhi Wang
机构
[1] Beijing Institute of Technology,School of Physics
来源
Journal of Materials Science | 2019年 / 54卷
关键词
Assisted Ion Beam; Atomic Composition; Full Width Of Half Maximum (FWHM); Alternative Plasmonic Materials; Drude Lorentz Dispersion Model;
D O I
暂无
中图分类号
学科分类号
摘要
Titanium oxynitride (TiOxNy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {TiO}}_{x}{\hbox {N}}_{y}$$\end{document}) thin films were fabricated by ion beam-assisted sputtering deposition. Effects of oxygen contribution, assisting ion energy (Ea\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm{a}}$$\end{document}), assisting ion beam current (Ia\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\mathrm{a}}$$\end{document}) on the microstructure and dielectric behavior of the films were analyzed. The results show that increasing O content made the films to turn from fcc-TiN (111)-oriented to fcc TiOxNy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {TiO}}_{x}{{\hbox {N}}}_{y}$$\end{document} (220)-oriented. Proper Ea\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm{a}}$$\end{document} and low Ia\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\mathrm{a}}$$\end{document} can enhance the (220) orientation in TiOxNy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {TiO}}_{x}{{\hbox {N}}}_{y}$$\end{document} thin films. The increase in oxygen content leads to the red-shift of plasmonic resonant frequency and makes the films more dielectric. Higher Ea\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm{a}}$$\end{document} and Ia\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\mathrm{a}}$$\end{document} make the TiOxNy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {TiO}}_{x}{{\hbox {N}}}_{y}$$\end{document} films more metallic. Atomic composition is an important factor underlying the results. The study provides a method to control the plasmonic properties of oxynitride films in a wide range by atomic composition and assisting ions.
引用
收藏
页码:1452 / 1461
页数:9
相关论文
共 134 条
  • [1] Naik GV(2013)Alternative plasmonic materials: beyond gold and silver Adv Mater 25 3264-3294
  • [2] Shalaev VM(2018)Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics Mater Sci Eng R 123 1-55
  • [3] Boltasseva A(2011)Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters Chem Rev 111 3888-3912
  • [4] Patsalas P(2003)Surface plasmon subwavelength optics Nature 424 824-830
  • [5] Kalfagiannis N(2011)Oxides and nitrides as alternative plasmonic materials in the optical range Opt Mater Express 1 1090-1099
  • [6] Kassavetis S(2015)Wide tuning of the optical and structural properties of alternative plasmonic materials Opt Mater Express 5 2415-2430
  • [7] Abadias G(2014)Influence of laser annealing on the structural properties of sputtered AlN: Ag plasmonic nanocomposites J Mater Sci 49 3996-4006
  • [8] Bellas DV(2018)Tailoring of surface plasmon resonances in TiN/(Al0.72Sc0.28)N multilayers by dielectric layer thickness variation J Mater Sci 53 4001-4009
  • [9] Giannini V(2015)Optical properties and plasmonic performance of titanium nitride Materials 8 3128-3154
  • [10] Fernndezdomnguez AI(2017)Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy Biomaterials 132 37-47