Molecular dynamics simulation of carbon nanotube growth under a tensile strain

被引:0
作者
Ayaka Yamanaka
Ryota Jono
Syogo Tejima
Jun-ichi Fujita
机构
[1] Research Organization for Information Science and Technology,Graduate School of Pure and Applied Science
[2] University of Tsukuba,undefined
来源
Scientific Reports | / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We performed molecular dynamics simulations of carbon nanotube (CNT) to elucidate the growth process in the floating catalyst chemical vapor deposition method (FCCVD). FCCVD has two features: a nanometer-sized cementite (Fe3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}C) particle whose melting point is depressed because of the larger surface-to-volume ratio and tensile strain between the growing CNT and the catalyst. The simulations, including these effects, demonstrated that the number of 6-membered rings of the (6,4) chiral CNT constantly increased at a speed of 1mm/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1}\,{\textrm{mm}/\textrm{s}}$$\end{document} at 1273K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1273}\,{\textrm{K}}$$\end{document}, whereas those of the armchair and zigzag CNTs were stopped in the simulations and only reached half of the numbers for chiral CNT. Both the temperature and CNT chirality significantly affected CNT growth under tensile strain.
引用
收藏
相关论文
共 79 条
[1]  
White CT(2005)Fundamental properties of single-wall carbon nanotubes J. Phys. Chem. B 109 52-65
[2]  
Mintmire JW(1999)Optical properties of single-wall carbon nanotubes Synth. Met. 103 2555-2558
[3]  
Kataura H(2003)Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements C. R. Phys. 4 993-1008
[4]  
Ruoff RS(1976)Filamentous growth of carbon through benzene decomposition J. Cryst. Growth 32 335-349
[5]  
Qian D(1991)Helical microtubules of graphitic carbon Nature 354 56-58
[6]  
Liu WK(2018)Carbon nanotube bundles with tensile strength over 80 GPa Nat. Nanotechnol. 13 589-595
[7]  
Oberlin A(2020)On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: Multiscale investigation Sci. Technol. 41 209-218
[8]  
Endo M(2011)Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review Prog. Polym. Sci. 36 914-944
[9]  
Koyama T(1996)Crystalline ropes of metallic carbon nanotubes Science 273 483-487
[10]  
Iijima S(1997)Large-scale production of single-walled carbon nanotubes by the electric-arc technique Nature 388 756-758