Duality for Harmonic Differential Forms Via Clifford Analysis

被引:0
|
作者
Ricardo Abreu-Blaya
Juan Bory-Reyes
Richard Delanghe
Frank Sommen
机构
[1] Universidad de Holguín,Facultad de Informática y Matemática
[2] Universidad de Oriente,Departamento de Matemática
[3] Ghent University,Department of Mathematical Analysis
来源
Advances in Applied Clifford Algebras | 2007年 / 17卷
关键词
30G35; 58A10; 46A20; Clifford analysis; multivector fields; harmonic differential forms;
D O I
暂无
中图分类号
学科分类号
摘要
The space HFk(Ω) of harmonic multi-vector fields in a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Omega \subset \mathbb{R}^{n}$$ \end{document} as introduced in [1] is closely connected to the space of harmonic forms. The main aim of this paper is to characterize the dual space of HFk(E) being \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbf{E} \subset \mathbb{R}^{n}$$ \end{document} a compact set. It is proved that HFk(E)* is isomorphic to a certain quotient space of so-called harmonic pairs outside E vanishing at infinity.
引用
收藏
页码:589 / 610
页数:21
相关论文
共 50 条
  • [1] Duality for harmonic differential forms via Clifford analysis
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Delanghe, Richard
    Sommen, Frank
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (04) : 589 - 610
  • [2] Annihilators for Harmonic Differential Forms Via Clifford Analysis
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Delanghe, Richard
    Sommen, Frank
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (03) : 443 - 454
  • [3] Annihilators for Harmonic Differential Forms Via Clifford Analysis
    Ricardo Abreu-Blaya
    Juan Bory-Reyes
    Richard Delanghe
    Frank Sommen
    Advances in Applied Clifford Algebras, 2011, 21 : 443 - 454
  • [4] Differential Forms and Clifford Analysis
    Sabadini, Irene
    Sommen, Franciscus
    MODERN TRENDS IN HYPERCOMPLEX ANALYSIS, 2016, : 247 - 263
  • [5] Differential Forms in Hermitean Clifford Analysis
    Brackx, F.
    De Schepper, H.
    Eelbode, D.
    Soucek, V.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 642 - +
  • [6] DIFFERENTIAL OPERATORS ON POLAR HARMONIC MAASS FORMS AND ELLIPTIC DUALITY
    Bringmann, Kathrin
    Jenkins, Paul
    Kane, Ben
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (04): : 1181 - 1207
  • [7] Clifford systems, Clifford structures, and their canonical differential forms
    Kai Brynne M. Boydon
    Paolo Piccinni
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021, 91 : 101 - 115
  • [8] DUALITY IN COMPLEX CLIFFORD ANALYSIS
    RYAN, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 61 (02) : 117 - 135
  • [9] Clifford systems, Clifford structures, and their canonical differential forms
    Boydon, Kai Brynne M.
    Piccinni, Paolo
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2021, 91 (01): : 101 - 115
  • [10] Harmonic analysis for differential forms on complex hyperbolic spaces
    Pedon, E
    JOURNAL OF GEOMETRY AND PHYSICS, 1999, 32 (02) : 102 - 130