Bi-Hamiltonian Structure in 2-d Field Theory

被引:0
作者
E.V. Ferapontov
C. A. P. Galvão
O. I. Mokhov
Y. Nutku
机构
[1] Institute for Mathematical Modelling,
[2] Academy of Science of Russia,undefined
[3] Miusskaya,undefined
[4] 4,undefined
[5] Moscow 125047,undefined
[6] Russia,undefined
[7] Universidade de Brasilia,undefined
[8] Departamento de Física,undefined
[9] 70.910 Brasilia DF,undefined
[10] Brasil,undefined
[11] Department of Geometry and Topology,undefined
[12] The Steklov Mathematical Institute,undefined
[13] Academy of Science of Russia,undefined
[14] ul. Vavilova,undefined
[15] 42,undefined
[16] Moscow,undefined
[17] GSP-1,undefined
[18] 117966,undefined
[19] Russia,undefined
[20] TÜBİTAK - Marmara Research Center,undefined
[21] Research Institute for Basic Sciences,undefined
[22] Department of Physics,undefined
[23] 41470 Gebze,undefined
[24] Turkey,undefined
关键词
Field Theory; Variational Principle; Single Equation; Hamiltonian Structure; Primary Field;
D O I
10.1007/s002200050123
中图分类号
学科分类号
摘要
We exhibit the bi-Hamiltonian structure of the equations of associativity (Witten-Dijkgraaf-Verlinde-Verlinde-Dubrovin equations) in 2-d topological field theory, which reduce to a single equation of Monge-Ampère type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ f_{ttt}=f_{xxt}^{\;\;\;\;\;2} - f_{xxx}f_{xtt} \, ,$$\end{document} in the case of three primary fields. The first Hamiltonian structure of this equation is based on its representation as a 3-component system of hydrodynamic type and the second Hamiltonian structure follows from its formulation in terms of a variational principle with a degenerate Lagrangian.
引用
收藏
页码:649 / 669
页数:20
相关论文
empty
未找到相关数据