A geometric basis for surface habitat complexity and biodiversity

被引:0
作者
Damaris Torres-Pulliza
Maria A. Dornelas
Oscar Pizarro
Michael Bewley
Shane A. Blowes
Nader Boutros
Viviana Brambilla
Tory J. Chase
Grace Frank
Ariell Friedman
Mia O. Hoogenboom
Stefan Williams
Kyle J. A. Zawada
Joshua S. Madin
机构
[1] Hawai‘i Institute of Marine Biology,Department of Biological Sciences
[2] University of Hawai‘i at Mānoa,Centre for Biological Diversity
[3] Macquarie University,Australian Centre for Field Robotics
[4] Scottish Oceans Institute,Department of Computer Science
[5] University of St Andrews,ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering
[6] University of Sydney,undefined
[7] German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,undefined
[8] Martin Luther University Halle-Wittenberg,undefined
[9] James Cook University,undefined
[10] Greybits Engineering,undefined
来源
Nature Ecology & Evolution | 2020年 / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Structurally complex habitats tend to contain more species and higher total abundances than simple habitats. This ecological paradigm is grounded in first principles: species richness scales with area, and surface area and niche density increase with three-dimensional complexity. Here we present a geometric basis for surface habitats that unifies ecosystems and spatial scales. The theory is framed by fundamental geometric constraints between three structure descriptors—surface height, rugosity and fractal dimension—and explains 98% of surface variation in a structurally complex test system: coral reefs. Then, we show how coral biodiversity metrics (species richness, total abundance and probability of interspecific encounter) vary over the theoretical structure descriptor plane, demonstrating the value of the theory for predicting the consequences of natural and human modifications of surface structure.
引用
收藏
页码:1495 / 1501
页数:6
相关论文
共 89 条
[1]  
Pimm SL(2014)The biodiversity of species and their rates of extinction, distribution, and protection Science 344 1246752-50
[2]  
Newbold T(2015)Global effects of land use on local terrestrial biodiversity Nature 520 45-3025
[3]  
Alvarez-Filip L(2009)Flattening of Caribbean coral reefs: region-wide declines in architectural complexity Proc. Biol. Sci. 276 3019-326
[4]  
Dulvy NK(1984)The complexity and stability of ecosystems Nature 307 321-733
[5]  
Gill JA(1985)Fractal dimension of vegetation and the distribution of arthropod body lengths Nature 314 731-49
[6]  
Côté IM(2000)Separating the elements of habitat structure: independent effects of habitat complexity and structural components on rocky intertidal gastropods J. Exp. Mar. Biol. Ecol. 249 29-17
[7]  
Watkinson AR(2012)Habitat complexity: approaches and future directions Hydrobiologia 685 1-99
[8]  
Pimm SL(1921)Species and area J. Ecol. 9 95-47
[9]  
Morse DR(2012)Habitat complexity in aquatic systems: fractals and beyond Hydrobiologia 685 27-132
[10]  
Lawton JH(2003)The area-independent effects of habitat complexity on biodiversity vary between regions Ecol. Lett. 6 126-366