Multiplicative (generalized)-derivations acting on left sided ideals with annihilator conditions in semiprime rings

被引:0
|
作者
Ghosh, Sourav [1 ]
Dhara, Basudeb [2 ]
Sandhu, Gurninder S. [3 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, WB, India
[2] Belda Coll, Dept Math, Paschim Medinipur 721424, WB, India
[3] Patel Mem Natl Coll, Dept Math, Rajpura 140401, India
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2024年 / 30卷 / 02期
关键词
Prime ring; Semiprime ring; One sided ideal; Extended centroid; Derivation; Multiplicative generalized derivation; GENERALIZED DERIVATIONS; LIE IDEALS; PRIME; ALGEBRAS;
D O I
10.1007/s40590-024-00620-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring with center Z(R), lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a nonzero left-sided ideal of R, 0 not equal a is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \ne a\in R$$\end{document} and F,G:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F, G: R\rightarrow R$$\end{document} be multiplicative (generalized)-derivations of R associated to the maps d,g:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d,g:R\rightarrow R$$\end{document}, respectively. In the present paper, we study the following identities: a(G(xy)+/- F(x)F(y)+/- xy)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(xy)\pm F(x)F(y)\pm xy) \in Z(R)$$\end{document};a(G(xy)+/- F(x)F(y)+/- yx)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(xy)\pm F(x)F(y)\pm yx) \in Z(R)$$\end{document};a(G(yx)+/- F(x)F(y)+/- yx)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(yx)\pm F(x)F(y)\pm yx) \in Z(R)$$\end{document};a(G(yx)+/- F(x)F(y)+/- xy)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(yx)\pm F(x)F(y)\pm xy) \in Z(R)$$\end{document}; for all x,y is an element of lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in \lambda $$\end{document}.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Power Values of Generalized Derivations with Annihilator Conditions in Prime Rings
    Dhara, Basudeb
    De Filippis, Vincenzo
    Scudo, Giovanni
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) : 123 - 135
  • [32] POWER VALUES OF GENERALIZED DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS
    Ali, Asma
    De Filippis, Vincenzo
    Khan, Shahoor
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 2887 - 2897
  • [33] Engel conditions of generalized derivations on left ideals and Lie ideals in prime rings
    Dhara, Basudeb
    De Filippis, Vincenzo
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 154 - 167
  • [34] ANNIHILATOR CONDITIONS OF MULTIPLICATIVE REVERSE DERIVATIONS ON PRIME RINGS
    Sandhu, Gurninder S.
    Kumar, Deepak
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 : 87 - 103
  • [35] Annihilator condition of a pair of derivations in prime and semiprime rings
    Basudeb Dhara
    Nurcan Argaç
    Krishna Gopal Pradhan
    Indian Journal of Pure and Applied Mathematics, 2016, 47 : 111 - 124
  • [36] ANNIHILATOR CONDITIONS WITH GENERALIZED SKEW DERIVATIONS AND LIE IDEALS OF PRIME RINGS
    De Filippis, Vincenzo
    Rehman, Nadeem Ur
    Scudo, Giovanni
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2022, 32 : 192 - 216
  • [37] Some Identities Involving Multiplicative Generalized Derivations in Prime and Semiprime Rings
    Dhara, Basudeb
    Mozumder, Muzibur Rahman
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (01): : 25 - 36
  • [38] Generalized derivations with annihilator conditions in prime rings
    Asma Ali
    Shahoor Khan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 783 - 792
  • [39] DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS
    Dhara, Basudeb
    Kar, Sukhendu
    Mondal, Sachhidananda
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (05) : 1651 - 1657
  • [40] POWER VALUES OF DERIVATIONS WITH ANNIHILATOR CONDITIONS ON LIE IDEALS IN PRIME RINGS
    Dhara, Basudeb
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2159 - 2167