Multiplicative (generalized)-derivations acting on left sided ideals with annihilator conditions in semiprime rings

被引:0
|
作者
Ghosh, Sourav [1 ]
Dhara, Basudeb [2 ]
Sandhu, Gurninder S. [3 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, WB, India
[2] Belda Coll, Dept Math, Paschim Medinipur 721424, WB, India
[3] Patel Mem Natl Coll, Dept Math, Rajpura 140401, India
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2024年 / 30卷 / 02期
关键词
Prime ring; Semiprime ring; One sided ideal; Extended centroid; Derivation; Multiplicative generalized derivation; GENERALIZED DERIVATIONS; LIE IDEALS; PRIME; ALGEBRAS;
D O I
10.1007/s40590-024-00620-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring with center Z(R), lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a nonzero left-sided ideal of R, 0 not equal a is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \ne a\in R$$\end{document} and F,G:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F, G: R\rightarrow R$$\end{document} be multiplicative (generalized)-derivations of R associated to the maps d,g:R -> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d,g:R\rightarrow R$$\end{document}, respectively. In the present paper, we study the following identities: a(G(xy)+/- F(x)F(y)+/- xy)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(xy)\pm F(x)F(y)\pm xy) \in Z(R)$$\end{document};a(G(xy)+/- F(x)F(y)+/- yx)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(xy)\pm F(x)F(y)\pm yx) \in Z(R)$$\end{document};a(G(yx)+/- F(x)F(y)+/- yx)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(yx)\pm F(x)F(y)\pm yx) \in Z(R)$$\end{document};a(G(yx)+/- F(x)F(y)+/- xy)is an element of Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G(yx)\pm F(x)F(y)\pm xy) \in Z(R)$$\end{document}; for all x,y is an element of lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in \lambda $$\end{document}.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Orthogonality of two left and right generalized derivations on ideals in semiprime rings
    Aboubakr, Ahmed
    Gonzalez, Santos
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (03) : 611 - 620
  • [22] Derivations with annihilator conditions on Lie ideals in prime rings
    Huang, Shuliang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (02)
  • [23] Annihilator condition of a pair of derivations in prime and semiprime rings
    Dhara, Basudeb
    Argac, Nurcan
    Pradhan, Krishna Gopal
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (01) : 111 - 124
  • [24] Generalized derivations on Lie ideals in semiprime rings
    Aboubakr A.
    González S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (4): : 841 - 850
  • [25] Lie Ideals and Generalized Derivations in Semiprime Rings
    De Filippis, Vincenzo
    Rehman, Nadeem Ur
    Ansari, Abu Zaid
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (02): : 45 - 54
  • [26] On Centrally-Extended Multiplicative (generalized)-( α, β )-Reverse Derivations in Semiprime Rings
    Alhaidary, Zahraa S. M.
    Zaghir, Khatam A. D.
    Al-Lami, Raghad
    Abduldaim, Areej M.
    Faraj, Anwar Khaleel
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04) : 1147 - 1154
  • [27] GENERALIZED DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS
    Dhara, Basudeb
    De Filippis, Vincenzo
    Pradhan, Krishna Gopal
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03): : 943 - 952
  • [28] Some identities related to multiplicative (generalized)-derivations in prime and semiprime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Bera, Nripendu
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1497 - 1516
  • [29] Generalized derivations with annihilator conditions in prime rings
    Ali, Asma
    Khan, Shahoor
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 783 - 792
  • [30] On centrally-extended multiplicative (generalized)-(α, β)-derivations in semiprime rings
    Muthana, Najat
    Alkhamisi, Zakeiah
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02): : 578 - 585