Failure behavior of Cu–Ti–Zr-based bulk metallic glass alloys

被引:1
|
作者
Medhat Awad El-Hadek
Magdy Kassem
机构
[1] Suez Canal University,Department of Mechanical Design & Production, Faculty of Engineering
[2] Suez Canal University,Department of Metallurgy, Faculty of Petroleum & Mining Engineering
来源
Journal of Materials Science | 2009年 / 44卷
关键词
High Resolution Transmission Electron Microscopy; Shear Band; Metallic Glass; Amorphous Alloy; High Resolution Transmission Electron Microscopy;
D O I
暂无
中图分类号
学科分类号
摘要
Microstructure fracture and mechanical properties of Cu-based bulk metallic glass alloys were investigated. Centrifugal casting into copper molds were used to manufacture basic Cu47Ti33Zr11Ni9, and modified Cu47Ti33Zr11Ni7Si1Sn1 alloys. Although the alloys show an amorphous structure, TEM images revealed the formation of nanoparticles. At room temperature compression tests reveal fracture strength of 2000 MPa, elastic modulus of 127 GPa, and 1.8% fracture strain for the unmodified basic alloy. Whereas the modified alloy exhibits a fracture strength of 2179 MPa, elastic modulus reaches 123 GPa, and 2.4% fracture strain. So, with the addition of 1 at.% Si and Sn, the fracture strength improves by 9% and the fracture strain improves by 25%, but the fracture behavior under compression conditions exhibits a conical shape similar to that produced by tensile testing of ductile alloys. A proposed fracture mechanism explaining the formation of the conical fracture surface was adopted. The formation of homogeneously distributed nano-size (2–5 nm) precipitates changes the mode of fracture of the metallic glass from single to multiple shear plane modes leading to the conical shape fracture surface morphology.
引用
收藏
页码:1127 / 1136
页数:9
相关论文
共 50 条
  • [1] Influence of cyclic loading on the onset of failure in a Zr-based bulk metallic glass
    D. V. Louzguine-Luzgin
    L. V. Louzguina-Luzgina
    S. V. Ketov
    V. Yu. Zadorozhnyy
    A. L. Greer
    Journal of Materials Science, 2014, 49 : 6716 - 6721
  • [2] The ductile to brittle transition behavior in a Zr-based bulk metallic glass
    Li, G.
    Jiang, M. Q.
    Jiang, F.
    He, L.
    Sun, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 625 : 393 - 402
  • [3] Mode II fracture behavior of a Zr-based bulk metallic glass
    Flores, Katharine M.
    Dauskardt, Reinhold H.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (11) : 2418 - 2435
  • [4] Dynamic mechanical behavior of a Zr-based bulk metallic glass composite
    Kong, Jian
    Ye, Zhitao
    Chen, Wen
    Shao, Xueli
    Wang, Kehong
    Zhou, Qi
    MATERIALS & DESIGN, 2015, 88 : 69 - 74
  • [5] Reliability of the plastic deformation behavior of a Zr-based bulk metallic glass
    Fan, J. J.
    Yan, Y. F.
    Chen, S. H.
    Ng, Chi-Ho
    Wu, F. F.
    Chan, K. C.
    INTERMETALLICS, 2016, 74 : 25 - 30
  • [6] Effect of crystallization on the deformation behavior of a Zr-based bulk metallic glass
    Lendvai, Janos
    Gubicza, Jeno
    Labar, Janos L.
    Kuli, Zoltan
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2009, 100 (03) : 439 - 442
  • [7] Bulk metallic glass formation of Cu-Zr-Ti-Sn alloys
    Zhang, QS
    Zhang, HF
    Deng, YF
    Ding, BZ
    Hu, ZQ
    SCRIPTA MATERIALIA, 2003, 49 (04) : 273 - 278
  • [8] Behavior of multiple shear bands in Zr-based bulk metallic glass
    Liu, LF
    Dai, LH
    Bai, Y
    Wei, BC
    Eckert, J
    MATERIALS CHEMISTRY AND PHYSICS, 2005, 93 (01) : 174 - 177
  • [9] Macrophage responses to a Zr-based bulk metallic glass
    Huang, Lu
    Zhang, Tao
    Liaw, Peter K.
    He, Wei
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (10) : 3369 - 3378
  • [10] Serration Dynamics in a Zr-Based Bulk Metallic Glass
    Z. Wang
    J. W. Qiao
    H. J. Yang
    P. K. Liaw
    C. J. Huang
    L. F. Li
    Metallurgical and Materials Transactions A, 2015, 46 : 2404 - 2414